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Abstract

In silico experimental evolution is a relatively new �eld of research that aims at studying
the dynamics of evolutionary processes. Evolution experiments are conducted by simu-
lating the evolution of populations of digital organisms in controlled conditions. Then,
comparative analyses of the di�erent outcomes of evolution depending on a reduced set of
parameters allow the practitioner to shed light on intricate e�ects that would have been
very di�cult to identify otherwise.

The Aevol model is an in silico experimental evolution model that was speci�cally de-
velopped by Carole Knibbe to study the evolution of the structure of the genome. Using
Aevol, a very strong second-order selective pressure towards a speci�c level of mutational
variability of the phenotype was revealed: it was shown that since the survival of a lineage
in the long term is conditioned to its ability to produce bene�cial mutations while not los-
ing those previously found, a speci�c trade-o� between replication �delity and evolvability
is indirectly selected. The balance between replication �delity and evolvability depends
on the per base rate of local mutations, but also on the per base rate of chromosomal re-
arrangements and the genome size. Thus, a consequence of this indirect selective pressure
is the central role played by the spontaneous rate of chromosomal rearrangements in de-
termining the structure of the genome. More speci�cally, it was shown that because some
rearrangements (large duplications and large deletions) have an impact not only around
their breakpoints but on the whole sequence between them, non-coding sequences are
actually mutagenic for the coding sequences they surround. The consequence is a clear
trend for organisms having evolved under high rearrangement rates to have very short
genomes with hardly any non-coding sequences while organisms evolving in the context
of low rearrangement rates have huge, mostly non-coding genomes. Still, many questions
remained open regarding both the precise conditions under which this indirect pressure
can be involved, and its putative impact on other levels of organization such as the tran-
scriptome and the proteome. Besides, in the experiments conducted by C. Knibbe, the
breakpoints for rearrangements were chosen at random. Given the central role of chro-
mosomal rearrangements in this process, a �ner modelling of these rearrangements was
badly needed to account for speci�cities of these events and in particular their sensitivity
to sequence similarity.

Here, we modi�ed the Aevol model to introduce an explicit regulation of gene expres-
sion as well as a sensitivity to sequence similarity in DNA recombination events. We
observed that the e�ects of the second-order pressure mentioned above are very robust
to modelling choices: they are similarly observed when gene regulation is made available,
when rearrangements occur preferentially between similar sequences and even when a bi-
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ologically plausible process of horizontal transfer is allowed. Moreover, the e�ects of this
second-order selective pressure are not limited to the genomic level: high rearrangement
rates usually lead to genomes that have many polycistronic RNAs, almost no non-coding
RNAs and very simple regulation networks. On the contrary, at low rearrangement rates
organisms have most of their genes transcribed on monocistronic RNAs, they own a huge
number of non-coding RNAs and present very complex and intricate regulation networks.

These e�ects at di�erent levels of organization can account for many features found on real
organisms. Thus, the indirect selective pressure that was identi�ed thanks to the Aevol
model makes it possible to reproduce a large panel of known biological properties simply
by changing the spontaneous rearrangement rate, making this pressure a good candidate
for explaining these observations on real organisms.
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Introduction

Since Charles Darwin's Origin of Species (Darwin, 1859) 150 years ago, it has been known
that evolution takes place whenever three basic ingredients are put together: inheritance,
variation and selection. Since then, many advances have been made in understanding the
process of evolution and the underlying principles.
Today, the support of inheritance and the mechanisms underlying its expression and
transmission are very well known: any living thing on earth owns a genome, usually
encoded on a DNA (DeoxyriboNucleic Acid) sequence, which contains a certain number
of genes, each of which will be translated into a protein through a transcription-translation
process. This DNA sequence is replicated and transmitted to the next generation that is
thus able to produce the same proteins, at least in the same environmental conditions.
However, this genetic sequence is not totally stable, it is subject to physical and chemical
stress that can damage it, thus causing modi�cations in the sequence, either locally (point
mutations, small insertions or deletions) or at a genome-wide level, leading to chromosomal
rearrangements. Rearrangements can reshape the whole chromosome, they can occur when
the DNA is damaged to the point that the chromosome is cut into pieces. Some error-
repair mechanisms allow the DNA segments to be reassembled but can fail to restore their
original order, thus producing a rearranged chromosome. Rearrangements can also occur
during DNA replication when the DNA-Polymerases make errors, or as a side-e�ect of
the activity of transposable elements.
In comparison, the selection process could be thought of as trivial: a �simple� competition
allowing for sorting between the products of genetic variability, the ��ttest� organisms
having a greater probability of reproduction than less �t ones. However, this selection
process is a lot more intricate. Of course, if one considers two very di�erent individuals
in a population, one might have a direct physical advantage over the other: a blind eagle
might �nd it more di�cult to feed or breed than a sharp-sighted one. On the opposite, if
one considers two phenotypically equivalent individuals, one could postulate that selection
is blind-folded in that case and that only random genetic drift might be in action. This is
not true in the long term: let us consider three phenotypically identical individuals that
only di�er through their tendency to produce genetic variations, for example because of
their mutation rate. Mutations being mostly deleterious, an organism with a very high
mutation rate will produce very few (if any) viable o�spring. In extreme cases (above
the �error threshold� � Eigen, 1971; Biebricher and Eigen, 2005), the lineage of such an
organism undergoes more mutations than it can sustain and will quickly be driven to error
catastrophe (Orgel, 1963) and extinction. As it is, it would be tempting to suggest that
the lower the mutation rate of an organism, the more viable o�spring it has and hence
the higher its probability of �winning� the evolutionary competition. Yet, every now and
then, a bene�cial mutation can occur, resulting in a �tter o�spring that will progressively
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overcome the entire population. As a matter of fact, a bene�cial mutation is more likely
to occur in a moderately varying lineage than in a highly conservative one. Thus, there
seems to be an optimal trade-o� between the mutational robustness of the phenotype of
an individual and its ability to evolve, namely its evolvability (Kirschner and Gerhart,
1998). Moreover, robustness and evolvability can themselves be selectionable traits. In
other words, they can themselves be subject to evolution (Earl and Deem, 2004), leading
to what is sometimes called �second-order selection�.
As we have previously stated, genetic variation is usually the result of errors (mutations)
in the DNA sequence. However, many error-correction mechanisms have evolved that can
reduce by orders of magnitude the rate at which these errors occur. Yet, when looking at
di�erent kinds of organisms among the living kingdom, one can observe great di�erences
in their spontaneous mutation rates: for example the spontaneous mutation rate of bac-
teriophage T4 was estimated to 2× 10−8 per bp per replication (Drake, 1991) while that
of drosophila melanogaster was estimated to 3.4 × 10−10 per bp per replication (Drake
et al., 1998). This suggests that di�erent life forms did not evolve error-repair systems
to the same extent, which in turn raises several questions: why have some organisms
evolved very e�ective error-correction mechanisms while others have hardly evolved any?
Are these di�erences the result of mere chance or did a selective pressure drive the evo-
lutionary process one way or the other depending on environmental conditions? While
these questions are very di�cult to answer, one can nonetheless imagine evolutionary
explanations for these di�erences. One could argue, for instance, that the high mutation
rates undergone by viruses allow them to evolve faster. Then, despite the immediate cost
of having many non-viable o�spring (and hence a lower �tness), in the long-term, lineages
having higher mutation rates could evade the immune response of their hosts by evolving
faster than the immune response itself. This is an example of indirect (or second-order)
selective pressure towards evolvability. An example of second-order pressure towards ro-
bustness can be found in the structure of the genome itself when several genes overlap,
sharing parts of their sequences, thus yielding a reduced mutational target. Direct forces
that drive evolution (selection of the �ttest) are thus coupled with more subtle, indirect
(second-order) pressures toward e.g. robustness or evolvability.
The e�ects of such second-order selective pressures are very di�cult to study, either in vivo
or in vitro. Indeed, evolution is an intricate process that takes place on a very long time
scale. It involves many di�erent mechanisms that are entangled and whose e�ects can
span several levels of organization and be observed di�erently on di�erent time scales.
If experimental evolution using real organisms is possible � the most famous example
being R. Lenski's experiment on Escherichia coli that has been running for over 50.000
generations (Woods et al., 2011) � it remains extremely long and costly, which prevents
it from being used extensively. Moreover, both real organisms and the environments they
evolve in are very complex and it is nearly impossible to isolate the observed phenomena
and hence to identify links of causality between speci�c environmental features and the
product of evolution. Besides, the random nature of evolution makes it di�cult, if not
impossible, to reproduce events of interest that occurred by chance.
Comparative genomics approaches are a way to study evolution on long time scales.
Genomes of di�erent species are studied and compared with one another to reconstruct
the evolutionary history of life as we know it today. Algorithms based upon the similari-
ties between sequences from di�erent species allow biologists to identify and characterize
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mechanisms that take part in the evolutionary process. However, these approaches are
solely based on a snapshot of contemporaneous sequences, upon which the e�ects of many
di�erent mechanisms and pressures are superimposed, making the puzzle very di�cult to
disentangle. Besides, fossil records being quite sparse, it is usually di�cult to con�rm the
results obtained with these approaches. Finally, to quote John Maynard Smith, �We badly
need a comparative biology. So far, we have been able to study only one evolving system
and we cannot wait for interstellar �ight to provide us with a second� (Maynard Smith,
1992). Indeed, as we have already emphasized, evolution is highly undeterministic, mean-
ing that life could have been very di�erent from life as we know it. To study evolution as
a process, we need several repetitions of this process, which, as a matter of fact, we don't
have.
Interestingly this particular quote from John Maynard Smith continues: �If we want to
discover generalizations about evolving systems, we will have to look at arti�cial ones�.
In other words, as �real� biology provides us with only one single instance, the only way
we can compare di�erent instances is by creating arti�cial ones and hence by building
models of evolution that we can simulate a great number of times.
Population genetics and the theory of quasispecies (Eigen et al., 1989) are a way to tackle
the problem. By building mathematical models of evolution, one can conduct analytic
studies of the e�ects of di�erent parameters on the outcome of evolution. However, these
models usually rely on very strong assumptions such as in�nite population sizes or single
gene �organisms�.
An alternative approach to study evolution is to build an explicit model of evolution and
run simulations with it. This approach is referred to as digital genetics (Adami, 2006).
Terminologies of arti�cial or in silico evolution are also common. In the last 20 years,
digital genetics have proved to be of major interest in unravelling universal mechanisms
governing evolution, especially when it comes to second-order pressures towards robustness
and / or evolvability (Wilke et al., 2001; Adami, 2006).
The Aevol model in particular was developed by Carole Knibbe during her PhD thesis
(Knibbe, 2006) to study the evolution of the structure of the genome, making it the
perfect candidate to observe indirect selection and study its consequences on evolution
and genome organization. Using this model, Knibbe et al. (2007a) identi�ed a strong
second-order selective pressure towards a speci�c level of mutational variability of the
phenotype. In these experiments, which are presented in more detail at the end of chapter
I, the mutation rate was identi�ed as a major determinant of the amount of non-coding
DNA. A mathematical analysis of the mechanisms underlying genetic variation in the
model revealed that this e�ect was due to the mutagenic e�ects of non-coding sequences
for their neighbouring genes when chromosomal rearrangements are involved. In all the
experiments presented in Knibbe et al. (2007a), the genome was shaped by evolution in
such a way that the best individual in the population produced on average one neutral
o�spring, i.e. one o�spring that shared the exact same phenotype as its parent's.
These seminal results shed light on a strong indirect pressure on the very structure of
the genome. They are of major importance because i) it would have been very di�cult
to identify these pressures using another method than in silico evolution, and ii) they
suggest hypotheses that are often overlooked when it comes to understanding particular
structures in real genomes. These results showed that even when non-coding sequences
have no direct impact whatsoever on the phenotype or �tness, the genome of evolved
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organisms can still contain a huge proportion of them. Now if second-order pressures can
lead to highly non-coding genomes single-handed, they may very well be able to produce
other structures of interest or some kind of modularity upon the genome. Indirect selective
pressures could also be proposed to have an impact on further levels of organization of
the cell such as, for instance, the transcriptome or even the proteome. On the other hand,
this raises the question of the robustness of these results. Even though many di�erent
scenarii were tested, showing that this pressure applies regardless of the shape or �com-
plexity� of the environment, of the intensity of selection or of the degree of pleiotropy of
proteins (i.e. the range of biological processes it contributes to), some questions remain:
would the identi�ed pressure still be involved in a system in which an additional degree of
freedom is provided by a process of regulation of gene expression, and if so, what would
be its impact on the structure and complexity of the regulatory network itself? Of utmost
interest are the questions of homology driven rearrangements and of horizontal transfer:
most chromosomal rearrangements occur between similar sequences. Yet, in Knibbe et al.
(2007a), computational limits had made it impossible to account for sequence similari-
ties in the chromosomal rearrangements model, so that rearrangement breakpoints were
actually chosen at random along the chromosome. Finally, can horizontal transfer turn
the observed e�ects o� by providing a way to evade the problem of linkage disequilibrium
(Sniegowski et al., 2000)? These questions are the starting point of this PhD thesis. To
tackle them, we improved the implementation of the model to enable longer experiments
(from a few tens of thousands of generations to up to millions of generations when needed)
and conducted further experiments with both the original model and with two extensions
of it: one including an explicit regulation process and the other, a more detailed model
of chromosomal rearrangements based on sequence homology and allowing for a plausible
horizontal transfer mechanism.
This manuscript is organized into �ve chapters. The �rst three chapters are dedicated to
the model in its former version as well as its R-Aevol extension. In the �rst chapter, after
a state-of-the-art of in silico experimental evolution, a detailed description of the model
will be provided, followed by a presentation of its usage and the seminal results obtained
with it. In chapter II, the causes and consequences of the second-order pressure identi�ed
by Knibbe et al. (2007a) will be discussed, focusing on the respective impact of mutations
and rearrangements and on the e�ects of this pressure at the level of the transcriptome,
showing in particular that operon structures can arise when they are not expected, as a
vector towards genome streamlining. The third chapter will be dedicated to R-Aevol, an
extension of the model developed by Yolanda Sanchez-Dehesa (Sanchez-Dehesa, 2009) in
which an explicit gene regulation process was introduced to study the evolution of gene
regulation networks. Experiments we conducted with R-Aevol showed a very strong e�ect
of second-order selection on the size and complexity of regulation networks. Chapter IV
describes another extension of the model, in which a sensitivity to sequence similarity
was introduced in the chromosomal rearrangement process in order to investigate the
role of both homologous and nonhomologous rearrangements in the evolution of genome
structure. Finally, in chapter V, we will describe a model of homology-driven horizontal
transfer and discuss both the e�ects of homologous and nonhomologous recombination
on evolution, and the impact of transfer on the indirect pressure for a speci�c level of
robustness and evolvability we have already mentioned.
This work shows the ubiquity of this second-order pressure, which acts as a strong de-
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terminant not only of the structure of the genome, but also of that of the transcriptome
and, at least to some extent, of the proteome. Moreover, this pressure seems to be very
robust to modelling choices, its e�ects being consistently observed regardless of whether
gene expression can be regulated or even of whether genetic material can be exchanged
between lineages. As its e�ects span several levels of organisation, this pressure allows
a large panel of biological structures observed in real organisms to be parsimoniously
reproduced by acting on the rearrangement rate alone.
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Chapter I

The Aevol Model

1 Introduction

The Aevol model is a digital genetics model (Adami, 2006) developed in the LIRIS lab to
study the structuration of the genome in a Darwinian evolution process. Digital genetics
models simulate, in a reasonable computational time, the evolution of a population of
arti�cial organisms in a controlled environment. The typical use of these models is very
similar to �wet� experimental evolution procedures (Elena and Lenski, 2003), so that it is
also referred to as in silico experimental evolution: populations of organisms are initialized
and left to evolve in controlled conditions. Then, by observing the products and the
dynamics of the evolutionary process in di�erent conditions and by comparing them, one
can unravel the direct or indirect pressures that constrain the structure of the genome.
However, because real organisms have a much greater generation time than arti�cial ones,
time scales are fundamentally di�erent. Thus, when a �wet� evolution experiment is very
expensive and can last for decades (Blount et al., 2008), a simulated one takes only a few
days or weeks and has a very reduced cost.
In this chapter, the state-of-the-art of in silico experimental evolution will be presented,
followed by a focus on the Aevol model. A brief overview of Aevol will provide the reader
with a general understanding of the whole process, then every stage of this process will
be developed in more detail, focusing particularly on the speci�cities of Aevol with regard
to other digital genetics models. Finally, the seminal results obtained with Aevol, the
starting point of this PhD, will be presented.

2 In Silico Experimental Evolution: State of the Art

In silico experimental evolution is a relatively new �eld of research that emerged about 20
years ago. Populations of virtual organisms are placed in a virtual environment in which
they compete to reproduce. Each organism owns some kind of genetic material which is
interpreted by dedicated programs to compute its phenotype, which itself is the basis of
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a selection process. Finally, this genetic material undergoes variation, usually during the
reproduction process.
From a programmer's point of view, digital genetics models are very close to Genetic
Algorithms. However, their respective goals di�er greatly: on the one hand, genetic algo-
rithms use our knowledge of the evolutionary process in order to �nd a solution to an
engineering problem (in fact by evolving a solution), and on the other hand, the aim of in
silico experimental evolution is rather to study the evolutionary process itself. A digital
genetics model must thus put all the ingredients for Darwinian evolution together in a
simple model, to allow the practitioner to study the emergence of particular properties,
depending on di�erent parameters.
This global scheme can be derived in many ways depending on the biological questions
that are to be addressed. Di�erent types of genetic material can be used, from sequences
of instructions or nucleotides to pools of genes. The information contained by this genetic
material can then be processed by di�erent arti�cial chemistries (Dittrich et al., 2001) to
ful�l a speci�c task such as resource- or data-processing. Selection can also take several
forms, either synchronous or asynchronous, local or global, based directly on a �tness
value or depending on the rank of the individuals in the population. Finally, the genetic
operators that can be implemented strongly depend on how the genetic information is
encoded: formalisms using sequences, and in particular sequences of nucleotides, can use
very realistic genetic operators, while formalisms whose genetic material is more abstract
are doomed to use highly speci�c operators as well.
I propose here a brief review of the di�erent kinds of formalisms used in in silico evolution
using a terminology inspired by that proposed by Hindré et al. (2011). Genetic algorithms
used for engineering purposes are outside the scope of this review because their goal is
not to study evolution but rather to use it for optimization purposes.

2.1 The �Program� Formalism

The �rst digital genetics models were �Program� models. In this class of models, the
virtual organisms are actually programs that compete for computational time and possibly
memory space in a virtual computer with an ad-hoc operating system. The genome of these
individuals is the sequence of instructions that will be executed during their life time.
Because the genome is a sequence, these models are well suited to study the evolution
of some structural aspects of genomes such as gene-clustering. However, as the genome
codes directly for a sequence of instructions without any notion of genes or proteins, it is
di�cult to compare them with that of real genomes.
Tierra (Ray, 1991) was the �rst model to be developed. In Tierra, organisms are not
evaluated according to their performance of a prede�ned task, which makes it a model
of real open-ended evolution. Organisms directly compete for survival by evolving better
ways of reproducing. Hence, as in natural evolution, there is no need for a �tness value
for the system to operate, �tness is simply a measure the experimentalist can use. In
addition to the expected optimizations that were found by evolution, experiments using
Tierra showed the spontaneous emergence of parasites and hyper-parasites as well as a
certain kind of sociality (Ray, 1991, 1992). Tierra was also used as a test case for the
classical successive substitution interpretation of evolution in a chemostat (Yedid and
Bell, 2001), an interpretation that could be thought of as short-sighted.
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Avida (Adami and Brown, 1994) is probably the most widely used model using the �Pro-
gram� formalism. Contrary to Tierra, organisms are isolated from one another, thus being
protected against parasitic attacks. They are given speci�c tasks (logical operations) to
perform and are rewarded additional computational time accordingly. Thus, in Avida,
evolution is no longer open-ended. Many works have used Avida mostly tackling the evo-
lution of evolvability and robustness (Wilke et al., 2001; Wilke and Adami, 2003; Elena
and Sanjuan, 2008), but also the evolution of complexity (Lenski et al., 2003) or modu-
larity (Misevic et al., 2006) as well as adaptive radiation (Chow et al., 2004).
Musso and Feverati (2011) proposed a model of Turing Machine evolution. Using this
model, they showed that the amount of active code that can be maintained by selection
admits an upper bound � the error threshold (Eigen, 1971) � and that whatever the
mutation rate imposed on the organisms, evolution pushes this amount of coding sequences
toward the error threshold corresponding to this mutation rate.

2.2 The �MorphoElements� Formalism

In this formalism, the genome of an organism codes for body parts (morphological ele-
ments) interconnected by joints upon which forces can be applied either directly or through
�muscle� elements. The behaviour of the organism is also encoded on the genome and co-
evolve together with the morphological properties. Karl Sims' Creatures (Sims, 1994b)
as well as Framsticks (Komosi«ski and Ulatowski, 1999) are probably the most widely
known and used models of this kind. Both models were used to study the evolution of
morphology, in particular when several organisms are placed in a situation of co-evolution,
either through competition or predator-prey interactions (Sims, 1994a; de Back, 2006).
This formalism is very much in vogue in the Arti�cial Life community and models of
this kind are very numerous, including the GOLEM project (Pollack and Lipson, 2000),
Blindbuilder (Devert et al., 2006) and Josh Bongard's robots (Bongard and Paul, 2001;
Bongard, 2010), each of which has its particular interest. The main drawback of these sys-
tems is the lack of realism of the genomes, which are very speci�c and often recursive (in
Creatures for instance, the genome takes the form of a recursive directed graph), which
makes it very di�cult to disentangle the e�ects of the evolutionary process itself from
those caused by implementation choices. Moreover, as we have previously stated, such
speci�c �genetic� encoding implies very strong constraints on the mutation operators that
can be used, which have to be very speci�c and can hence hardly be compared with real
mutation mechanisms. It must be mentionned that, in the last few years, several authors
have focused on developmental approaches (Bongard and Pfeifer, 2003; Devert et al., 2007;
Harding et al., 2010) that prove to be more evolvable than direct morphological encoding.
However, this is outside the scope of the present work, that focuses on the evolution of
the structure of the genome.

2.3 The �Network� Formalism

Models using the �Network� formalism have been developed to study speci�cally the evo-
lution of gene regulation networks. These models are very distinctive in that the organisms
are themselves, networks, represented in the form of connection weights or node functions.
There is no explicit genome level, neither are there intermediate levels such as the tran-
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scriptome or the proteome that, in real organisms, give rise to regulatory networks. It is
indeed the interactions between cis- or trans- acting elements throughout these di�erent
levels of organization that engender regulation in real organisms. In models of the �Net-
work� kind, the network is hard-wired and mutations directly modify its nodes' behaviour
or connection weights. Again, these mutation operators being very speci�c, it is di�cult
to compare them to real mutation mechanisms. Nevertheless, important results were ob-
tained using �Network� models, mostly regarding the evolution of network robustness and
evolvability as well as modularity (Kashtan and Alon, 2005; Kashtan et al., 2007, 2009;
Wagner, 1996; Espinosa-Soto and Wagner, 2010; Siegal and Bergman, 2002; Martin and
Wagner, 2008; Ciliberti et al., 2007; Draghi and Wagner, 2009; Azevedo et al., 2006).

2.4 The �Allelic� Formalism

In the �Allelic� formalism, the genome is made up of a �xed number of loci, each of which
is associated to a prede�ned set of possible alleles. Each allele of a gene is associated to a
direct contribution to the organism's �tness that has to be predetermined arbitrarily. This
formalism has been used to study the evolution of mutator alleles in di�erent conditions
and its e�ect on the increase of the average �tness of the population (Taddei et al., 1997;
Tenaillon et al., 1999). Allelic models can also be used with an in�nite number of alleles
to explore the behaviour of a system under neutral drift, for example the conditions of
divergence leading to speciation (Hanage et al., 2006). Many features of �Allelic� models
are ad-hoc by essence, for instance many assumptions have to be made regarding the
respective frequencies and impacts of bene�cial, deleterious and lethal mutations. These
models are also very abstract and do not capture features of any speci�c organism, rather,
they account for the general dynamics of the evolutionary process and are thus best-suited
for testing general processes such as the evolution of mutation rates.

2.5 The �String-of-Pearls� Formalism

In this formalism, which is also often referred to as the �Beads-on-a-String� formalism,
the genome consists of a sequence of elements that usually represent genes but can also be
of di�erent natures, including transcription factor binding sites, retroposons and repeats.
This formalism is �exible in terms of gene order and allows for consistent large chromoso-
mal rearrangements. Important results were obtained using this kind of model, regarding
the evolution of evolvability through modularity (Crombach and Hogeweg, 2007), the evo-
lution of gene regulation networks in alternating environments (Crombach and Hogeweg,
2008), sympatric speciation (Tusscher and Hogeweg, 2009) and resource cycling in ecosys-
tems (Crombach and Hogeweg, 2009).

2.6 The �Sequence of Nucleotides� Formalism

Here, the genome takes the form of a variable-length sequence of characters, each char-
acter representing a nucleotide. Speci�c prede�ned motifs are used as signal sequences
(analogous to e.g. promoters) to detect the coding sequences upon the genome, the re-
mainder being strictly non-coding. Because the structure of the genome is similar to that
of real genomes, all the possible mechanisms of genetic variation found in real organisms
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can be modelled in a realistic way, including chromosomal rearrangements and horizontal
transfer. Furthermore, the explicit modelling of transcriptional and translational processes
allow for the study of di�erent levels of organization besides that of the genome, most no-
tably the transcriptome and the proteome. Models of this kind have allowed to shed light
onto the evolution of non-coding DNA and gene number (Knibbe et al., 2007a, 2008),
the evolution of gene regulation networks (Kuo et al., 2006; Beslon et al., 2010b) and
of metabolism (Flamm et al., 2010; Ullrich et al., 2011). It has also been proposed that
such models could be used to generate benchmarks to test e.g. gene network inference
strategies (Mattiussi and Floreano, 2007; Marbach et al., 2009; Beslon et al., 2010a).

2.7 Conclusion

Among these formalisms, none is systematically better than the rest. In fact, which for-
malism is best highly depends on the question one wants to address 1. However, many
questions require that genetic variation mechanisms be �nely modelled, which can only
be achieved through the �Sequence of Nucleotides� formalism. This is particularly true in
our speci�c case: since we are interested in the evolution of the structure of the genome,
we must model the genome in a very realistic way.

3 Overview of the Aevol Model

Aevol is a digital genetics model following the �Sequence of Nucleotides� formalism. It was
developed by Guillaume Beslon and Carole Knibbe to study the evolution of the structure
of the genome (Knibbe, 2006; Knibbe et al., 2007a,b). Because the goal is to use the model
to study speci�cally the evolution of the structure of the genome, the model must be
very realistic on that particular level. Not only must the genome itself have a biologically
plausible structure, but also the genetic operators. Both local (point mutations and indels)
and global (chromosomal rearrangements and horizontal transfers) genetic operators must
be modelled, and both the prerequisite for the corresponding events and their e�ects
must be highly similar to those of real genetic variation mechanisms. This biologically
inspired genome must then be interpreted in terms of adaptation through a simple arti�cial
chemistry (Dittrich et al., 2001) that can be simulated in a short computational time so
that it can be integrated in an evolutionary loop. Interestingly, if the model has to be very
realistic on the level of the genome, the further we get from this level, the more we can
allow the model to be abstract. Indeed, as we are not interested in the phenotypic nor the
ecological level, we do not need a very precise model at these levels. This will allow for a
computationally tractable model of evolution featuring a very realistic genome level.
From a computer science point of view, Aevol is an individual-based evolutionary model
that simulates the evolution of a population of N arti�cial organisms. At each generation,
all the individuals are evaluated and compete for reproduction through a roulette wheel
selection process. N o�spring are produced by error-prone replication, forming the new
population that will replace the former one. The initial generation is usually made up

1. This consideration is actually general to any modelling approach, the kind of model as well as its
degree of precision or realism all depend on the question one wants to �ask� the model.
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of N clones of a randomly generated individual with a basic prerequisite that it owns at
least one �good� gene.
In Aevol, each organism possesses its own genome, whose structure is greatly inspired by
bacterial genomes. It is organized as a circular double-strand binary string containing a
variable number of genes most likely separated by non-coding sequences (�gure I.1-a).
Aevol being a �Sequence of Nucleotides� model, genes in Aevol are not de�ned by their
position on the genome (locus speci�c). They are identi�ed thanks to a set of prede-
�ned signalling sequences (�gure I.1-b) and are translated into abstract proteins during
an explicit transcription-translation process (�gure I.1-c) using a prede�ned genetic code
(�gure I.1-d). Metabolic processes are de�ned within a metabolic function space Ω and
each protein can either realize or inhibit a particular set of abstract biological processes
with a certain possibility degree. Then, the metabolic activity of each protein is computed
through three parameters m, w and h (�gure I.1-e) characterizing a fuzzy set that repre-
sents the possibility degree at which each metabolic process is realized (�gure I.1-f). This
computation of the activity of proteins could be thought of as a kind of �folding� process.
Once all the proteins have been characterized, their individual activities are combined,
thus giving rise to the organism's phenotype (�gure I.1-g) that is expressed in the same
space as protein activities. Finally, this phenotype is compared to a prede�ned environ-
mental target (also expressed in the same space) to determine how �t the organism is,
i.e. to compute its �tness.

4 Proteins, Phenotypes and Environments:

a simple Arti�cial Chemistry

To model the activity of proteins and the corresponding phenotype, we de�ned a simple
arti�cial chemistry (Dittrich et al., 2001) that describes the metabolism of an organism
in a mathematical formalism. We assume that there is an abstract space Ω of all the
biological processes an organism could possibly accomplish. In the model, Ω = [0, 1] is
a one-dimensional interval, so that a biological process is simply represented by a real
number between 0 and 1. In this �metabolic space�, the phenotype P of an organism is
represented by a fuzzy set that expresses the e�cacy with which this organism realizes
each biological process in Ω (�gure I.2). This e�cacy is expressed in a fuzzy set formalism:
the possibility theory. Thus, a protein's e�cacy will also be referred to as the �degree of
possibility� with which it realizes a particular process.
An organism is made up of proteins, and each protein is involved in a subset of biological
processes, either contributing to their realization or inhibiting it with a possibility degree
ranging between 0 and 1. The activity of a protein is then characterized by a function
associating a certain possibility degree to each process in Ω. For reasons of simplicity,
Aevol uses piecewise-linear functions with a symmetric triangular shape. Thence, only
three numbers are needed to fully characterize the metabolic activity of a protein: the
position m of the triangle on the biological process axis, its height h and its half-width
w. A prede�ned genetic code (table I.1) associates each possible triplet of nucleotides
(codons) with an abstract Amino-Acid (AA) that will have an impact on the value of
one of the parameters m, w or h. The coding sequence of a gene hence consists of three
interlaced binary sequences, each of which codes for one of the parameters of the protein
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(a)

(b)
(c)

(d)

(e)(f)

(g)

Figure I.1 � In Aevol, each organism possesses a circular double-strand binary genome (a)
along which coding sequences are identi�ed thanks to prede�ned signalling sequences (b).
Promoters and terminators mark the boundaries of transcribed sequences, i.e. RNAs (c)
within which coding sequences can in turn be identi�ed between a Shine-Dalgarno-Start
signal and an in-frame Stop codon. The sequence thus identi�ed will then be translated
into the primary sequence of the corresponding protein thanks to a prede�ned genetic code
(d), this primary sequence being in turn interpreted as the m, w and h parameters of
the protein (e). Proteins, phenotypes and environments are represented similarly through
fuzzy sets that associate a possibility degree to each possible metabolic function. For
simplicity reasons, a protein's metabolic contribution takes the form of a piecewise-linear
function with a triangular shape, them, w and h parameters corresponding respectively to
the position, half-width and height of the protein's metabolic activity (f). All the proteins
of the organism are then combined to compute the phenotype (g) that, once compared
to the environment target, can be used to compute the �tness of the individual.

(see �gure I.1-e). Finally, each of these sequences is interpreted as a real value using
the Gray code and is then normalized within the domain of de�nition of the parameter.
The thereby de�ned protein then contributes to the range [m − w,m + w] of metabolic
processes, either realizing or inhibiting them, with a preference for the processes closest
to m (for which the highest e�cacy h is reached). Whether the protein actually realizes
the function or inhibits it depends on the value of the parameter h: a positive h will yield
the realization of the functions and a negative value will inhibit them. In this framework,
di�erent types of proteins can co-exist, from highly e�cient and highly specialized ones
(small w, high h) to polyvalent but poorly e�cient ones (large w, low h).

In the model, the environment is indirectly represented by a phenotypic target: the fuzzy
set E, de�ned on Ω, that represents the optimal degree of possibility for each biological
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Ω

Degree of Possibility

Figure I.2 � Fuzzy set representation of an organism's phenotype (thin line) and of the
environmental target (thick curve). Each possible metabolic process in Ω is realized with
a certain degree of possibility, that of the environmental target representing the optimal
value. The grey area between the two curves represents the metabolic error (or gap) g of
the organism. The smaller this metabolic error, the �tter the organism.

Codon AA Meaning
000 START Marks the beginning of a gene

(in conjunction with an upstream Shine-Dalgarno sequence)
001 STOP Marks the end of a gene
100 M0 Adds a 0 bit to the binary sequence for parameter m
101 M1 Adds a 1 bit to the binary sequence for parameter m
010 W0 Adds a 0 bit to the binary sequence for parameter w
011 W1 Adds a 1 bit to the binary sequence for parameter w
110 H0 Adds a 0 bit to the binary sequence for parameter h
111 H1 Adds a 1 bit to the binary sequence for parameter h

Table I.1 � The genetic code that was used in all the experiments presented in this
manuscript. Note that there is no redundancy.

process in this particular environment. To evaluate an individual, we compare its phe-
notype P to this environmental target E. The geometric area, or gap g between these
two sets represents the metabolic error of the individual (see �gure I.2). It takes into
account both the over- or under-realization of each biological process. The smaller this
metabolic error, the better the individual (i.e. the higher its �tness) and the greater its
probability of reproduction. Ultimately, an individual with a phenotype matching pre-
cisely the environmental target would be considered perfect. However, as the environment
is de�ned as a non-linear continuous function, improving the phenotypic approximation
of the phenotype can only be done by increasing the number of proteins to in�nity.
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5 From Genotype to Phenotype

In Aevol, the way the genotype is decoded into a phenotype is directly inspired from
how it is achieved in bacteria. It basically follows the central dogma of molecular biology
(Crick, 1970), the genetic information �owing from DNA to proteins through RNA in
a transcription-translation process, and the primary sequence of proteins determining
their metabolic activity through what we could consider a �folding� process. We basically
de�ned a set of signalling sequences that allow us to identify the sequences that will be
transcribed into RNAs and, within these RNAs, the sequences that will be translated
into proteins. These proteins will then be interpreted in terms of realized or inhibited
biological processes.

5.1 Transcription: from DNA to RNAs

In bacteria, transcription initiates at particular sites, the promoters, where an RNA-
polymerase can recognize a consensus sequence and bind to the DNA to begin the synthesis
of an RNA molecule. In Aevol, a promoter is a sequence whose Hamming distance d with a
prede�ned consensus sequence is lower than or equal to dmax. The sequence we typically 1

use in our experiments is 22 base-pairs long: 0101011001110010010110 and we allow up
to dmax = 4 mismatches. This sequence is long enough for non-coding sequences to have
only a low probability of becoming a promoter after a mutation.
When a promoter is identi�ed, the following sequence is transcribed until a terminator is
found. Terminators must be more frequent than promoters to limit the overlapping of tran-
scribed sequences. Using a consensus based signal for terminators would therefore require
that consensus to be short. Then, this particular sequence could no longer be present in
any gene within the model, applying a strong constraint on gene sequences. Interestingly,
most bacterial terminators are not based upon a consensus, rather, they follow a general
pattern that renders a hair-pin structure because of the base-complimentarity property.
Remarkably, these ρ-independent terminators have the property of being both long and
frequent. We therefore de�ned a terminator as a sequence able to form a hairpin, usually
of length 4 for the stem and 3 for the loop. A terminator is then a sequence following the
pattern abcd ∗ ∗ ∗ dcba where a, b, c, d = 0 or 1 and ∗ is a wildcard.
A transcribed sequence (RNA) in Aevol is thus identi�ed by a promoter-terminator couple.
However, if one promoter marks the beginning of only one RNA, a terminator can mark
the end of several. Indeed, when several promoters follow one another with no terminators
in between, some DNA sequences can be transcribed onto several di�erent RNAs. It is
also worth noting that terminators form a hair-pin on both the leading and the lagging
strands, marking the end of transcription on both strands while promoters can only initiate
transcription on one strand.
The expression level e of each RNA depends on the �quality� of its promoter; the closer
its sequence to the consensus, the higher the expression level, namely e = 1− d

dmax+1
. This

modulation of gene expression models in a simple way the interaction between the RNA-
polymerase and the promoter without explicit regulation. As we will see in chapter III,

1. All the consensus signals are de�ned as parameters of the model and hence can be modi�ed.
Throughout this work, we used the same signals as in (Knibbe et al., 2007a).
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an extension of the model (R-Aevol) precisely allows for experiments with gene regulation
networks.

5.2 Translation: from RNA to Proteins

Similarly to the transcription process, the translation process is driven by signalling se-
quences. These signals are searched for on the transcribed sequences but while transcrip-
tion initiation signals were searched for on both strands (in opposite directions), transla-
tion initiation signals are only searched for in the promoter-to-terminator sense. The gene
initiation signal consists of a Shine-Dalgarno like sequence (usually 011011) followed, a
few base pairs further, by a Start codon (000 - see table I.1). In previous experiments,
the spacer between a Shine-Dalgarno sequence and a START codon was set to 3, how-
ever, this particular number representing exactly the size of a codon, it was set to 4 in all
further experiments. Hence, any sequence following the pattern 011011 ∗ ∗ ∗ ∗000 within
an RNA marks the beginning of a gene. Whenever an initiation signal is detected, the
following sequence is translated three bases (one codon) at a time until a Stop codon
(001) is found on the same reading frame. Each of these codons is translated into the cor-
responding amino-acid in the genetic code (table I.1), thus forming the primary sequence
of the protein that is being synthesized. Note that the genetic code is not redundant,
meaning that there is no bias towards any particular Amino-Acid.

5.3 Computation of the Metabolic Activity of a Protein

As seen in section 4, a protein's metabolic activity is represented in our fuzzy set environ-
ment framework as a triangle characterized by its mean value m, height h and half-width
w (�gure I.1-f). The primary sequence of a protein is broken down into a set of three
interlaced variable-length binary strings, corresponding to each of these parameters (�g-
ure I.1-e), following the genetic code (table I.1). For example, the codon 100 (resp. 101)
which is translated as a M0 (resp. M1) amino-acid, contributes to the m parameter by
adding a 0 (resp. 1) bit to its binary code. The binary sequence corresponding to each
parameter is then interpreted as an integer using the Gray binary code (a code in which
2 successive values di�er only by one bit) and �nally normalized into the interval of def-
inition of the parameter according to the length of the sequence (m ∈ [0, 1], h ∈ [−1, 1]
and w ∈ [0, wmax], wmax being a parameter of the model). The longer the sequence, the
more precise the value of the parameter. The resulting fuzzy set represents the e�cacy
with which each metabolic process in [m − w;m + w] is realized (if h > 0) or inhibited
(if h < 0), with a preference for those processes closest to m for which the maximum
possibility degree of e.|h| is achieved.

5.4 Phenotype Computation

Once all the proteins have been characterized, the phenotype can be computed by com-
bining each of their metabolic contributions. The phenotypic framework of Aevol allows
for both pleiotropy, a single protein being able to contribute to di�erent biological pro-
cesses, and polygeny. Indeed, as several proteins can contribute to the same biological
process, the degree of possibility associated to this process (i.e. the e�cacy with which
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the organism will be able to realize it) will then result from the interaction of these pro-
teins. To combine the activity of all the proteins, now represented as fuzzy sets, we used
Lucasiewicz's operators (equation I.1), that are better suited for modelling interactions
than most fuzzy operators.

NOT : x = 1− x
AND : x ∩ y = min(x+ y, 1)
OR : x ∪ y = max(x+ y − 1, 0)

(I.1)

The organism's phenotype is then given by P = (∪Ai) ∩ (∪Ij), with Ai the phenotypic
contribution of the i-th activating protein and Ij that of the j-th inhibiting protein. This
phenotype represents the e�cacy with which the organism realizes each biological process
in Ω.

6 Selection and Evolutionary Loop

When the phenotype P of an individual has been computed, it is compared to the en-
vironmental target E. The area, or gap g between these two fuzzy sets is the �metabolic
error � of the organism, that quanti�es how far it is from being perfectly adapted to its
environment. Once this �metabolic error� is known for all the individuals in the popula-
tion, a probability of reproduction is assigned to each organism according to either its
rank in the population or directly to this metabolic error value. Three di�erent selection
schemes have been implemented in Aevol.
In the �tness proportionate scheme, the probability of reproduction of each organism
is proportional to its �tness. A simple proportion to 1/g would produce a very mild
selection, yielding an evolution based almost exclusively on random drift, the probability of
reproduction is hence proportional to exp(−k.g), where k in�uences the selection intensity.
The other two selection schemes are based on the rank of the organisms in the population,
which allows us to maintain a constant selective pressure throughout the entire evolution-
ary process. Organisms are thus �rst sorted by increasing �tness (the worst individual in
the population having rank 1). Then, their probability of reproduction can be computed
depending on their rank r and according to whether the linear or exponential scheme is
used.
For the linear ranking scheme, the probability of reproduction of an individual is given
by preprod = 1

N
.(η− + (η+ − η−). r−1

N−1
), where η+

N
and η−

N
represent the probability of

reproduction of the best and worst individual respectively. The population size being
�xed, η− must be equal to 2 − η+. As for η+, it must be chosen in the interval [1, 2] so
that the probability increases with the rank and remains in [0, 1].
For the exponential ranking scheme, the probability of reproduction is given by preprod =
c−1
cN−1

.cN−r, where c ∈]0, 1[ determines the intensity of selection (the closer to 1, the weaker
the selection).
Whichever selection scheme is used, for each of theN (size of the population) o�spring that
will be produced, its actual parent is randomly drawn through a roulette wheel process, the
roulette wheel being biased according to the probability of reproduction of each organism.
The o�spring will receive a copy of the parental chromosome after this chromosome has
undergone a process of chromosomal rearrangements and local mutations. The newly
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formed population replaces the former one and the next iteration of the evolutionary loop
can begin. In the last chapter of this manuscript, an extension of the model is presented
in which a horizontal transfer event can be involved during the replication process.

7 Genetic operators

During their replication, genomes can undergo di�erent kinds of modi�cations acting on
di�erent scales: some (switches and indels) act locally, modifying the sequence intrin-
siquely while others (chromosomal rearrangements) act on a larger scale, changing the
organization of the sequence.

7.1 Local Mutations

Single Base Substitution (Switch)

This is the most basic mutation that is modelled in Aevol. A single base in the sequence
is switched from 0 to 1 or from 1 to 0.
When this type of mutation happens in a non-coding region, it is most likely silent. How-
ever, when it happens in a coding sequence, it has the potential of destroying a signalling
sequence, for instance a transcription initiation signal (promoter), hence destroying the
corresponding RNA and the putative genes it carried, or a translation termination signal
(Stop codon), hence lengthening the corresponding gene (or rendering it non-functional
if there is no other Stop codon before the terminator).
Of course, a switch can also create a new signalling sequence, however, this seldom leads to
the creation of a new gene. Indeed the prerequisites for creating a new gene from a random
sequence are stringent: there must be one signalling sequence of each kind and in the right
order (promoter, Shine-Dalgarno-Start, Stop codon, terminator). Furthermore, there is
no selection to direct the genetic drift towards such a sequence: it either appears as a
whole or has no phenotypic contribution whatsoever.
Finally, when a switch occurs within a gene, it modi�es one single codon of the gene, i.e.
one single amino-acid of the corresponding protein's primary sequence. Such a modi�ca-
tion can modify one characteristic of the phenotypic triangle (or two if the new codon is
not of the same kind as that of the former one, e.g. anM0 becoming an H0) either slightly
or substantially depending on local conditions. Mutations having a mild impact on the
phenotype allow for gradual modi�cations of the protein through successive mutations
within a lineage.

Indels

Small insertions or small deletions consist of inserting a few exogenous nucleotides into
the genome or deleting a few nucleotides from the genome (typically up to 6). These
mutations can have the same e�ects as single base mutations with regard to the creation
or destruction of signalling sequences. However, when occurring inside a gene, a distinction
must be made. Indeed, while an indel of 3 or 6 bases within a gene is likely to have only a
limited e�ect on phenotype, inserting or deleting a number of bases that is not a multiple
of 3 can cause a frameshift mutation, thus modifying the whole sequence of the gene
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downstream from the mutation and most likely changing its length. Indeed, as nucleotides
are translated three at a time until an in-frame STOP codon is found, inserting or deleting
e.g. two nucleotides will cause the whole sequence of the gene to be read in a di�erent
frame, including the STOP codon that will thus not be identi�ed as such.

Indels are hence mutations which, although they act locally, can still have drastic e�ects
on a scale of up to a few genes.

7.2 Chromosomal Rearrangements

Chromosomal rearrangements are large scale events that can involve sequences of any
size on the chromosome (up to the whole genome altogether). In bacteria, several mecha-
nisms can result in a rearranged chromosome, including double strand break (DSB) repair
mechanisms or DNA polymerases �jumping� from a sequence to another during replica-
tion. Depending on the localization and direction of the involved sequences, such events
can lead to di�erent kinds of rearrangements: duplications, deletions, translocations and
inversions (Higgins, 2005; Lewin, 2007).

� Duplication: a randomly chosen segment is duplicated, the copy being reinserted either
side by side with the template (tandem duplication) or at a random position on the
genome 1.

� Deletions: a randomly chosen segment is deleted from the genome.
� Translocations: a randomly chosen segment is excised from the genome. The segment
is then circularized and reinserted at a random position.

� Inversions: a randomly chosen segment is inverted, the sequence on each strand switch-
ing both strand and direction.

Each kind of rearrangement has di�erent consequences: inversions and translocations are
quite conservative since they basically consist in moving sequences around. The only
changes that can have a direct in�uence on the phenotype are at the breakpoints, where
the sequences are cut, potentially breaking genes or RNAs, and then put back together,
potentially creating new ones. Thus, even though they can lead to massive reorganizations
of the genome, the impact of inversions and translocations on the content of the genome
is similar to that of local mutations. As for duplications and deletions, their e�ect can be
dramatic since they can cause a whole segment of the genome to be irrevocably lost or a
group of genes to be fully duplicated. Ultimately, duplications and deletions can greatly
modify the size and the proportion of coding sequences of the genome.

Most of the mechanisms that can cause a chromosomal rearrangement depend on the
presence of similarities in the genetic sequence. In the standard version of the model
however, alignments are not mandatory for a rearrangement to occur, breakpoints being
simply drawn in a uniform distribution in [0;L[ where L is the genome length. One of
the main objectives of this work was to develop a more precise model of chromosomal
rearrangements in which rearrangements are more likely to occur at breakpoints that are
similar in sequence. This extension of the model is presented in Chapter IV.

1. In the former version of the model, tandem duplications are not formally modelled, the duplicated
segment being reinserted at a random point along the chromosome.
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8 In Silico Experimental Evolution with Aevol

Digital genetics models in general, and Aevol in particular, are very complex systems,
meaning that it is impossible to conduct a formal analysis on any such model. Besides,
simulations usually take a lot of time (up to a few months of calculation in extreme cases),
making it inconceivable to explore a vast parameter space. One could then argue that there
is no interest in building such a complex model. However, while such a model is indeed
complex, it is nonetheless a lot simpler than the initial object or process, making it easier to
study. Also, while simulations can take quite some time, the time scales are fundamentally
di�erent and even a long digital genetics experiment is several orders of magnitude faster
than an evolutionary experiment using real organisms. Furthermore, models allow the
practitioner to have better control of the conditions in which an experiment is conducted
and also a complete and exact fossil record of the whole evolutionary process. As Richard
Lenski said, �There are no missing links in the digital world� (cited in O'Neill (2003)).
Finally, digital genetics make it possible to conduct experiments that are impossible to
realize with real organisms (O'Neill, 2003).
In any case, the use of digital genetics models remains an experimental approach that
thus requires a strict experimental method. Therefore, the typical use of a digital genetics
model is very close to �wet� experimental evolution procedures (Elena and Lenski, 2003).
Populations of organisms are initialized and left to evolve in controlled conditions. Usually
one, and at most a few parameters are set to di�erent values from one simulation to the
next. Then, by observing the products and dynamics of the evolutionary process in the
di�erent conditions tested and by comparing them, one can shed light onto the impact
of the tested parameters and eventually unravel the direct and indirect pressures that
constrain the structure of the organisms. Table I.2 presents the parameters of the Aevol
model. Note that several simulations are needed for each set of parameters to assess the
repeatability and the statistical signi�cance of the observations, but this can be easily
achieved on computer farms or clusters.

At the end of a simulation, the line of descent (lineage) of the best individual of the last
generation can be reconstructed from the log �les. One can then analyse e.g. the particular
mutational events that went to �xation.
Despite its numerous advantages, in silico experimental evolution is still very demanding
in terms of computational resources. That is the reason why the model was thoroughly
reimplemented during this PhD. A great deal of e�ort has been dedicated to making the
code modular and maintainable while optimizing resource usage, in particular memory and
execution time (the latter being reduced 10-fold compared to earlier versions). It is now
possible to conduct large scale experiments, testing a wide combination of parameters
for hundreds of thousands of generations. This new implementation has also made it
possible to run large scale experiments using extensions of the model such as R-Aevol or
the alignment-based extension, that are a lot more computationally costly than the core
model. In fact, this new implementation is what made this work possible.
Some limitations remain, however, in particular regarding the size of the population we
can simulate. The memory of one single computer is indeed limited and resorting to disk
space to virtually increase it would come with an unacceptable increase of computational
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Parameter Meaning
N Population Size

nb_gener Number of Generations to be run
init_length Size of the initial, randomly generated genomes

Initial Population Generation Method.
Whether to use a bootstrap (generate genomes until the

init_method corresponding phenotype is better than the ��at� phenotype)
and whether to initialize the population with clones
of a single organism or with di�erent organisms

selection_scheme Selection scheme to use (linear ranking, exponential ranking
or �tness proportionate)

k, η+ or c Selective pressure (see section 6)
E =

∑
i

αiGi The environment is de�ned as the sum of any number

of Gaussian curves
env_sampling The environment is discretized as a piecewise-linear fuzzy set

this is the number of points to generate from the Gaussians
µpoint Point Mutation Rate
µs_ins Small Insertion Rate
µs_del Small Deletion Rate
µdupl Large Duplication Rate
µdel Large Deletion Rate
µinv Large Inversion Rate
µtrans Large Translocation Rate

max_indel_size Maximum number of bases inserted or deleted by an indel
Wmax Maximum Pleiotropy of Proteins

Table I.2 � Main parameters of the Aevol model. Parameters that are speci�c to a partic-
ular extension of the model will be presented along with the extension.

time. We are hence looking forward to implementing a parallel version of the model, that
will allow for both a faster execution (useful for demanding extensions of the model) and
larger population sizes (thanks to distributed memory).

Even though Aevol is under constant evolution, it is now stabilized and its use no longer
requires a great expertise of the model itself. Experiments can be conducted simply by
changing the parameters of the model. Aevol is available online as both stable releases and
a subversion (SVN) repository 1. This allowed in particular for an active collaboration with
a team from the INSERM in Paris that have extended the model to study the emergence
of cooperation (current versions of the model allow to use various extensions of the model
with the same code, depending on the parameters). We are now planning to initiate a
collaboration with the York Center for Complex Systems Analysis.

1. http://gforge.liris.cnrs.fr/projects/aevol/
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9 Seminal Results

Aevol was designed by Carole Knibbe and Guillaume Beslon. During her PhD thesis,
C. Knibbe explored the global properties of the model, discovering a strong second-order
pressure that � at least in the model � strongly determines several structural characteristics
of the genome such as the genome size, the number of genes and the amount of non-coding
DNA.

9.1 A Typical Run in Aevol

Using Aevol, full campaigns of evolution experiments can be run for hundreds of thousands
of generations in a very reasonable time (a few days for 500,000 generations of a population
of 1,000 individuals with default parameters). One can then conduct an analysis of the
di�erent genomic structures obtained with di�erent parameters and propose hypotheses
to explain the observed patterns. However, although the �nal genomic structures can be
very di�erent from one set of parameter to the other, the evolutionary process is itself
relatively stable over most simulations.

As the initial population is usually �lled with clones of a randomly generated individual 1,
the potential of adaptation is very high at the beginning of a simulation. Hence, during
the �rst few hundred generations, the organisms can improve very quickly, adapting to
their new environment. This �rst step of evolution is mainly driven by the recruitment
of new genes through gene duplication-divergence. Because at this stage of evolution,
duplications are often bene�cial, allowing the organisms to literally �ll the gap between
the initial phenotype and the environmental target by creating new genes, this �rst burst
of adaptation comes along with an explosion of the size of the genome (�gure I.3), that
increases from 5,000 base-pairs (bp � default initial size) to up to hundreds of thousands
of bp. In fact, every structural parameter (genome size, number of genes, overall size
of non-coding sequences) follows this pattern of extremely fast increase. This �rst stage
of evolution is immediately followed by a very fast decrease in the size of the genome,
accompanied by a loss of genes while the �tness continues to get better. Finally, during
the third stage of evolution, the genome stabilises in size and the number of genes it bears
increases slowly while they continuously tend to get longer, gaining in precision.

In Aevol, organisms can improve their �tness by acquiring new genes and/or by improving
those they already own. The progress of evolution shows that these mechanisms are not
used equally during the whole evolutionary process: organisms �rst enlarge their genome
and gene repertoire, usually recruiting new genes by duplication-divergence of existing
ones. Then, the coding sequences of these genes are improved while gene recruitment
continues, though, at a lower rate. Note that �tness is never completely stable and that
bene�cial mutations occur regularly throughout the whole evolution. Even at advanced
stages of evolution, selection thus remains directional.

1. A new random individual is generated and evaluated until its phenotype is better than the ��at�
phenotype.
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(a) Metabolic error (�tness measure).
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(b) Genome size.
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(c) Amount of non-coding DNA.
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(e) Average gene size.

Figure I.3 � Evolution of the �tness and of a few genomic characteristics of the best
individual of each generation in a typical run.



42 I. The Aevol Model

9.2 Evolution of Evolvability

As we mentioned in the introduction of this manuscript, experiments using the Aevol
model have shed light on a very interesting second-order pressure. Speci�cally, it was
shown that the rate of mutations in general, and rearrangements in particular, is a strong
determinant of the size and structure of the genome. It was also shown that this is due
to a long term selection of a speci�c level of mutational variability of the phenotype.
During her PhD thesis, C. Knibbe allowed 72 populations of 1,000 individuals to evolve
during 20,000 generations under di�erent mutation rates and selective pressures. The re-
sulting genome sizes and the number of genes they bore clearly scaled as a power law
of the mutation rate for each intensity of selection. This scaling of the genome size with
respect to the mutation rate is very similar to what was observed in DNA-based mi-
crobes (Drake, 1991). Interestingly the amount of non-coding sequences in the genomes
also scaled as a power-law of the mutation rate, furthermore with a greater exponent than
coding sequences (�gure I.4). Knibbe et al. (2007a) have shown that this is due to the
mutagenic e�ect of the non coding sequences on the surrounding genes when it comes to
large duplications and deletions: while local modi�cations of the sequence such as point
mutations or indels can be assumed to have no e�ect on the phenotype when they occur in
non-coding sequences, duplications and deletions, even when their breakpoints are in non-
coding sequences, can duplicate or delete huge portions of the genome, including genes.
Non-coding sequences can hence be considered as a passive substrate promoting chro-
mosomal rearrangements, thus widening the mutational target to the entire chromosome
when it could be thought to be limited to coding sequences.
A striking observation was that, for each intensity of selection, the fraction of neutral
o�spring (i.e. the fraction of organisms having the same phenotype as their parent) Fν of
the best individual in the last generation was roughly the same whatever the mutation
rate (�gure I.5). In fact, the evolved FνW (with W , the number of reproductive trials
of the best individual in the population) was always close to the value that, given the
selective pressure, would tend to make the best individual produce one single neutral
o�spring, the rest of its progeny undergoing changes in their phenotype. This suggests
the long-term selection of a particular trade-o� between exploration and exploitation, or
in other words between the maintenance of the ancestral phenotype and the search for
better ones.

9.3 Conclusion

Aevol is hence a digital genetics model in which the structure of the genome is very
realistic and is free to evolve. It integrates central genetic features and mechanisms and
in particular intermediate levels of organisation between the genome and the phenotype
(the transcriptome and the proteome) as well as realistic operators for both mutations
and rearrangements. Experiments have shown that, in Aevol, organisms are selected on
the basis of both their direct adaptation value and of indirect criteria such as the level of
mutational variability of their phenotype. Aevol is hence particularly suited for the study
of genome organization as a result of second-order selective pressures.
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Figure I.4 � (from Knibbe et al., 2007a). (A): Evolution of the number of genes and of the
amount of non-coding sequences in the line of descent of the �nal best organism of each
simulation with an exponential ranking selection scheme and c = 0.995. The common
rate µmr for mutations and rearrangements ranges from 5× 10−6 (light grey) to 2× 10−4

(black) per type of mutation per base pair per replication. Both the number of genes and
the amount of non-coding sequences clearly depend on the mutation/rearrangement rate,
the lower µmr, the more genes and non-coding bases. (B): Number of genes and amount
of non-coding sequences of the �nal best individual of each simulation. For the four values
of selective pressure tested (c = 0.9900: squares, 0.9950: circles, 0.9980: triangles, and
0.9995: diamonds), both the number of genes and the amount of non-coding sequences
scale as a power law of µmr.
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Figure I.5 � (from Knibbe et al., 2007a). The intensity of the selection sets the appropri-
ate level of variability. For each run, the fraction Fν of neutral o�spring of the �nal best
organism was estimated, both theoretically (A � see (Knibbe et al., 2007a)) and empiri-
cally (by simulating 1,000 independent replications: B). (A and B): for a given selection
intensity (c = 0.9900: squares, 0.9950: circles, 0.9980: triangles, and 0.9995: diamonds),
this evolved Fν is roughly the same for the six mutation rates tested despite the huge
diversity of genome structure. The evolved Fν is close to the value that would ensure an
average of one neutral o�spring to the best individual (dotted horizontal lines). (C): the
evolved Fν as a function of W , the number of reproductive trials of the best individual in
the population. They are indeed close to 1/W (black curve).
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Chapter II

Indirect Selection and the Organization

of Transcription

The results presented in this chapter have been partly published in Parsons et al.
(2010b), based upon a smaller set of data where the organisms evolved during 20,000
generations in a less demanding environment.

1 Introduction

In the previous chapter, we presented results obtained with the Aevol model, which al-
lowed us to identify a very strong second-order selective pressure towards a speci�c level
of mutational variability of the phenotype. Consequences of this pressure on the genome
structure include a strong trend for organisms having evolved under low mutation rates
to have a very large genome with many genes and a huge proportion of non-coding se-
quences. On the contrary, organisms having evolved under very high mutation rates have
very short genomes containing fewer genes and a very small proportion of non-coding
sequences. These e�ects were shown to be mostly due to the rates at which chromoso-
mal rearrangements occur, particularly duplications and deletions, that a�ect vast areas
of the genome. Chromosomal rearrangements can occur with breakpoints in any part of
the genome, regardless of whether these breakpoints fall in either coding or non-coding
regions. Since large duplications and deletions impact not only the sequences around the
breakpoints but the whole region between the breakpoints, this kind of event can a�ect
genes (either duplicating or deleting them) even when all the breakpoints are in non-
coding sequences. Thus, when large duplications and deletions are involved, non-coding
regions have a mutagenic e�ect on the surrounding genes. Then a population of organisms
owning a large genome, even mostly non-coding, in a context of high rearrangement rates,
would undergo so many rearrangements that it would fall into error catastrophe, i.e. it
would be unable to maintain its phenotype. On the contrary, organisms owning a very
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small genome in a context of low rearrangement rates would produce very few o�spring
di�ering from their parents, yielding a very poor evolvability.
Consequences of this second-order selective pressure on other levels of organization than
the genome are of the utmost interest, especially when it comes to the structure of the
transcriptome. Indeed, when one looks at real organisms, di�erences in the size and struc-
ture of the genome usually come along with great variations in the way the genome is
transcribed. On the one hand, short genomes are usually almost entirely transcribed, the
resulting RNAs being most of the time quite long and containing several genes (poly-
cistronic RNAs). In extreme cases, the whole genome can be transcribed in only a couple
of RNAs (Zheng and Baker, 2006). On the other hand, long genomes usually give rise to
short RNAs (after splicing), very few of which contain more than one single gene and most
containing no genes at all. These non-coding RNAs have received a great deal of attention
in the last few years (Ponjavic et al., 2007; Will et al., 2007), in particular micro-RNAs
that are thought to play a major role in the regulation of gene expression (Mattick and
Makunin, 2006; Kapranov et al., 2007).
What mechanisms are responsible for these variations in the organization of transcripts
and their relative importance remain open questions. Most e�orts in these matters have
been focused on understanding the evolution of operon structures. Operons are very in-
teresting DNA structures where several coding sequences (often functionally-related) are
packed together and transcribed together on a single messenger RNA (mRNAs). Operons
have been the subject of a great number of studies resulting in a set of theories that try
to explain their assembly and maintenance. The following summarizes the most defended
of these theories:

The coregulation model is the original theory that came along with the discovery of
the operon structure (Jacob et al., 1960). It claims that packing several functionally
related genes together on the same mRNA is bene�cial because they share their reg-
ulation sites, which means that variations of the transcription level (either because
of mutations on the promoter or because of regulation) will preserve the relative
expression levels of the gene products. According to this hypothesis, genes within
an operon should be likely to be functionally related.

The sel�sh operon theory postulates that clustering genes for weakly selected func-
tions together is bene�cial for the genes themselves as it allows them to be hor-
izontally transferred as a whole (fully functional unit), hence conferring a better
advantage to the receiver than they would have provided individually (Lawrence,
1999). In the light of this theory, horizontal transfer is a necessary condition for the
emergence of operons, which should contain preferentially genes that are functionally
related.

The mutational burden theory, �nally, propounds that it is the mutational hazard
that constrains the total amount of DNA: The larger the amount of excess DNA
(intergenic DNA, 3' and 5' UTRs, ...), the higher the probability of a rearrangement
to occur within it, potentially inactivating coding sequences or else disturbing the
dynamics of existing genes. Following this idea, a population subject to high rear-
rangement rates will face pressure to make genomes denser (Lynch, 2006; Knibbe
et al., 2007a). In some cases, this densi�cation may reach a point where transcribed
regions can actually merge or where a transcribed region can contain several trans-
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lated sequences thus composing an operon. In extreme situations, genes can even
share a part of their sequence and overlap. Both merging transcribed regions or
making genes overlap further reduces the size of the mutational target of the pheno-
type. This second order selective pressure for �streamlining� makes no assumption
regarding gene function or horizontal transfer, so operons should be able to arise in
the absence of transfer, putting together genes �working together� as well as func-
tionally unrelated genes. In this view, the presence of operons must depend on the
rearrangement rates, the selection strength and the population size.

Each of these theories has received evidence both for and against it. For instance, Pál and
Hurst (2004) argue that the gene composition of operons in E. Coli is incompatible with
the sel�sh operon theory but Hershberg et al. (2005) and Rensing (2002) suggest that it
can explain at least some operon structures. As a matter of fact, it is very di�cult to
validate any of these models since the underlying processes are complex and act on a very
long time scale. We propose here to investigate the organization of transcripts using the
Aevol model.

2 Experimental Setup

We used Aevol to allow 245 populations of 1,000 individuals to evolve independently for
50,000 generations in near identical conditions where the only changing parameters were
the mutation rate and the rearrangement rate (one common rate µm for each kind of local
mutations, i.e. small insertions, small deletions and point mutations, and one common rate
µr for each type of chromosomal rearrangements, i.e. duplications, deletions, inversions
and translocations). We tested all the combinations of 7 di�erent values (10−6, 2× 10−6,
5 × 10−6, 10−5, 2 × 10−5, 5 × 10−5 and 10−4) for µm and µr, each combination being
repeated �ve times with independent pseudorandom number generator seeds, yielding
among other features a di�erent initial population and di�erent mutational events. The
selection scheme that was used in all these experiments is the exponential ranking scheme,
with a selection pressure set to 0.998. Finally, the environment we used is strictly the same
as the one used for the experiments presented in chapter I, section 9.2 (see �gure I.2).
The complete set of parameters used in these experiments is presented in table II.1.

This experiment was designed as a null-experiment for the sel�sh operon theory: the pop-
ulations evolved in a strictly clonal framework where no horizontal transfer was allowed.
According to the sel�sh operon theory, sel�sh operons should not be observed in such
conditions. Thus, operons that would arise in our experiments could not be explained
by the sel�sh operon theory and could hence �nd their roots in either the co-regulation
theory or the mutational burden hypothesis. Mutation and rearrangement rates can be
varied to test the mutational hypothesis while the co-regulation theory can be addressed
by analysing the functional relatedness of genes organized in operons.
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Parameter Value
N 1,000

nb_gener 50,000
init_length 5,000
init_method Clonal, One Good Gene

selection_scheme Exponential Ranking
c 0.998

α1 = 1.2;G1 : µ = 0.52;σ2 = 0.12
E =

∑
i

αiGi α2 = −1.4;G2 : µ = 0.2;σ2 = 0.07

α3 = 0.3;G3 : µ = 0.8;σ2 = 0.03
env_sampling 300

µpoint
µs_ins µm ∈ {10−6, 2× 10−6, 5× 10−6, 10−5, 2× 10−5, 5× 10−5, 10−4}
µs_del
µdupl
µdel µr ∈ {10−6, 2× 10−6, 5× 10−6, 10−5, 2× 10−5, 5× 10−5, 10−4}
µinv
µtrans

max_indel_size 6
Wmax 0.01

Table II.1 � Parameters used in all the experiments of this chapter. Mutation and rear-
rangement rates take their values among those proposed, one common value for the three
types of local mutations, and one common value for the 4 types of rearrangements.

3 Results

3.1 Evolution of the Fitness

In these experiments, as opposed to those presented in (Knibbe et al., 2007a), two distinct
rates were used for the genetic operators: one common rate µm for each kind of local
mutation and one common rate µr for each kind of chromosomal rearrangement. This
distinction allowed us to assess the predominance of the rearrangement rate in the e�ects
of the indirect selective pressure we discussed in chapter I, section 9.2. The �rst striking
result we observed is that the �tness strongly depends on both the mutation and the
rearrangement rates (�gure II.1). After 50,000 generations, the best organisms are those
having evolved in a context of both low mutation rate and low rearrangement rate. Yet
the rearrangement rate seems to have a greater impact on �tness than the mutation rate.
In particular, when the rearrangement rate is very high (µr ≥ 2 × 10−4), the mutation
rate seems to have very little e�ect on the �nal �tness (at least in the range tested). Note
that, as shown in �gures II.1(a) and II.1(b), this e�ect is not due to the non-convergence
of some simulations.
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Figure II.1 � (Top): evolution of the metabolic error in the lineage of the �nal best indi-
vidual of each simulation with (a): µr = 10−5 (di�erent µm are represented by grey levels,
black lines corresponding to µm = 10−4), (b): µm = 10−5 (di�erent µr are represented by
grey levels, black lines corresponding to µr = 10−4).
(Bottom): metabolic error of the �nal best organism of each simulation, as a function of
µm (c) and µr (d). µr and µm are also respectively reported in (c) and (d) as the shape
of the points (circles: 10−4, upwards pointing triangles: 5 × 10−5, plus signs: 2 × 10−5,
multiply signs: 10−5, diamonds: 5 × 10−6, downwards pointing triangles: 2 × 10−6, stars:
10−6). Both µm and µr have an impact on the metabolic error of the �nal best individual,
the impact of µr being greater than that of µm. Organisms having evolved with the lowest
µr (10−6) and a low to medium µm (< 2× 10−5) tend to be best adapted.

3.2 Evolution of the Structure of the Genome

After 50,000 generations of evolution with di�erent rates of mutations and rearrangements,
the evolved organisms have very di�erent genome organization. According to previous
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results obtained with the Aevol model (Knibbe, 2006; Knibbe et al., 2007a), the major
determinant of genome size and structure should be the rearrangement rate. Figure II.2
shows the gene- and mRNA-content of the best organism of the last generation of three
representative simulations with, from top to bottom, high (10−4), moderate (10−5) and
low rearrangement (10−6) rates, all three of them sharing the same moderate mutation
rate (10−5). These organisms are indeed very di�erent: the higher the rearrangement rate
they evolved with, the shorter and apparently the denser their genome.
Figure II.3 shows the genome size of the best individual of each simulation after 50,000
generations, respectively plotted versus the rearrangement rate and the mutation rate.
According to these �gures, the rearrangement rate is indeed the main determinant of the
size of the genome although the local mutation rate also has an impact on it.
Interestingly, this e�ect is a lot stronger on non-coding sequences than it is on coding
sequences. Figure II.4 shows both the amount of coding and non-coding sequences as a
function of the rearrangement rate. The size of the non-coding sequences spans over four
orders of magnitudes while the size of the coding sequences varies only 10-fold.
Indeed, considering the number of genes and the number of base pairs that are included
in at least one gene on either strand (�gure II.5), the predominance of the rearrangement
rate over the local mutation rate seems to disappear. This points us directly to the error
threshold e�ect (Biebricher and Eigen, 2005), according to which there is an upper bound
to the mutation rate for a sequence of a given length (considered coding throughout its
whole length) above which too many mutations are undergone, leading to error catas-
trophe: the sequence can no longer be maintained by the selection that is over-ruled by
the mutational pressure. It is interesting to note that in the common understanding of
the error threshold principle, this e�ect is con�ned to the coding sequences and is caused
by point mutations. It is therefore not surprising to observe a clear e�ect of the local
mutation rate on the coding sequences.
In our particular case, it is not the size of the sequence that is �xed but the per bp mutation
and rearrangement rates; the size of the genome and the proportion of coding sequences
are free to evolve. The size of the coding-sequences can hence adopt a size for which the
genomic mutation and rearrangement rates are under the error threshold. This constraint
on the size of the coding sequences appears to be quite mild under a value of around
2 × 10−5 per bp either for the mutation rate or the rearrangement rate. However, above
this value, both the number of genes and the total amount of coding sequences collapse.
This threshold is better seen on �gure II.6 where we removed the points corresponding to
the highest three values for µm when data is plotted vs µr and vice versa 1. Considering
�gure II.1 in light of this observation, we can observe the same kind of variations, the loss
of �tness being more drastic above this threshold of 2× 10−5 for either µm or µr.
The mutation and rearrangement rates are hence the cause of a complex combined ef-
fect, the rearrangement rate impacting the whole genome (both coding and non-coding
sequences) while the mutation rate only acts upon the coding sequences.
As shown by Knibbe et al., these e�ects are the result of an indirect selective pressure
for a speci�c level of mutational variability of the phenotype: the size and structure of
the evolved genomes are consistently such that the best individual in the population
has on average at least one neutral o�spring, i.e. one o�spring having exactly the same

1. We removed these points because when the mutation rate and the rearrangement rate are both
very high, their e�ects are strongly entangled so that it is di�cult to di�erentiate their respective e�ects.
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scale : 114 bp scale : 114 bp

scale : 1166 bp scale : 1166 bp

scale : 14357 bp

(a) Genomes with genes

scale : 16187 bp

(b) Genomes with RNAs

Figure II.2 � Genome of the �nal best organism of typical simulations with respectively
high (10−4 � top), medium (10−5 � middle) and low (10−6 � bottom) rearrangement rates.
Left: black boxes represent genes. Right: black boxes represent coding RNAs (containing
at least one gene), grey boxes represent non-coding RNAs.
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Figure II.3 � Genome size (a) and amount of non-coding sequences (b) of the �nal best
organism of each simulation as a function of the mutation rate µm (left) and of the
rearrangement rate µr (right). µr and µm are also reported as the shape of the points
(circles: 10−4, upwards pointing triangles: 5 × 10−5, plus signs: 2 × 10−5, multiply signs:
10−5, diamonds: 5 × 10−6, downwards pointing triangles: 2 × 10−6, stars: 10−6). Both
µm and µr have an in�uence on the size of the genome and the amount of non-coding
sequences but with a very strong predominance of µr.

phenotype as its parent. Figure II.7 shows the proportion Fν of neutral o�spring of the best
individual in all the evolved populations after 50,000 generations. The observed values are
almost always just above that yielding an average of 1 neutral o�spring with the selection
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Figure II.4 � Amount of coding (circles) and non-coding (crosses) DNA of the �nal best
organism of each simulation as a function of the rearrangement rate µr. The amount of
both coding and non-coding sequences seems to follow roughly a power law (the variability
for a given value of µr is at least partly due to the di�erent values of µm). However, the
slope for the coding sequences is very mild while that for the non-coding sequences is
lower than −1, re�ecting a super-linear relation.

intensity that was used. This re�ects the indirect selection of an appropriate trade-o�
between exploitation and exploration, the production of one neutral o�spring ensuring
that nothing is lost while maximizing the number of exploration trials. Note that the
displayed data is that of the �nal best individual of each simulation, those organisms lying
under this threshold could well su�er an error catastrophe and be replaced by more robust
lineages. As a matter of fact, it would be of great interest to compare the evolutionary
fate of lineages displaying di�erent levels of Fν .

3.3 Evolution of the Structure of the Transcripts

Considering more speci�cally transcription-related features, our attention was drawn by
the surprising yet very clear trend for shorter genomes to contain longer cRNAs (�gure
II.8(a)). This trend is accompanied by a strong increase in the average number of coding
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(b) Amount of coding DNA

Figure II.5 � Number of genes (a) and amount of coding DNA (b) of the �nal best
organism of each simulation as a function of the mutation rate µm (left) and of the
rearrangement rate µr (right). µr and µm are also reported as the shape of the points
(circles: 10−4, upwards pointing triangles: 5 × 10−5, plus signs: 2 × 10−5, multiply signs:
10−5, diamonds: 5 × 10−6, downwards pointing triangles: 2 × 10−6, stars: 10−6). µm and
µr have a similar impact on coding sequences, as opposed to their very di�erent e�ects
on non-coding sequences (�gure II.3).

sequences per coding RNA as is shown in �gure II.8(b). Since the size of the genome scales
as a power law with the rearrangement rate, both these e�ects are clearly dependent on
the rearrangement rate.
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(b) Amount of coding DNA

Figure II.6 � Number of genes (a) and amount of coding DNA (b) of the �nal best
organism of each simulation as a function of the mutation rate µm (left) and of the
rearrangement rate µr (right). µr and µm are also reported as the shape of the points
(multiply signs: 10−5, diamonds: 5 × 10−6, upwards pointing triangles: 2 × 10−6, stars:
10−6). For reasons of clarity, we did not plot the points corresponding to the highest three
values of µr on the left hand side �gures and of µm and those on the right. It is clear that
there is a threshold, both for µm and µr, above which both the number of genes and the
amount of coding sequences fall more drastically when µm or µr are increased.

Since the average number of genes per cRNA increases with the rearrangement rate, it is
not surprising to observe substantially fewer monocistronic RNAs at high rearrangement
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Dotted line: value leading to an average of
1 neutral offspring among the 2.31 expected for the best individual

Figure II.7 � Proportion Fν of neutral o�spring of the �nal best organism of each sim-
ulation. Given the selection scheme (exponential ranking) and pressure (0.998), the best
organism of any generation of any of these simulations will produce, on average,W = 2.31
o�spring. The particular value Fν = 0.43 is remarkable since it leads to Fν .W = 1, i.e.
it is the value with which the best individual of the population will produce one neutral
o�spring on average. Apart from a few exceptions, all the points are just above this partic-
ular value, which is represented by the dashed line on the �gure. This data was obtained
empirically by simulating 10,000 independent replications of the �nal best individual of
each simulation.

rates than at low ones � �gure II.9(a). We did not expect, however, that the number of
polycistronic RNAs (operons) would remain stable throughout the whole set of tested pa-
rameters � �gure II.9(b). In fact it is not so surprising that some simple operons arise as a
result of pure chance, especially in genomes containing many genes, i.e. at low rearrange-
ment rates, where operons only represent 10 to 20% of the coding RNAs (�gure II.9(c)).
Taken together, these observations suggest that, at high rearrangement rates, some mR-
NAs are greatly extended to include many genes, the former promoters transcribing these
genes being subsequently removed, thus leading to a decrease in the number of mono-
cistronic RNAs while greatly increasing the number of genes in at least some operons.

The dynamics that lead to this RNA lengthening during evolution are very interest-
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Figure II.8 � (a): average size of coding RNAs and (b): number of genes per coding RNA
as a function of genome size. There is a clear tendency for very short genomes to have
long coding RNAs containing many genes.

ing: �gure II.10 shows that the higher the rearrangement rate, the more terminators are
counter-selected. This was clearly expected since getting rid of terminators is the only
way of producing longer RNAs. The e�ect on promoters however, is very surprising: up
to a certain rate of rearrangements, promoters seem to be all the more selected for, as
the rearrangement rate is high. Yet, above a critical threshold (around µr = 5 × 10−5),
the observed density of promoters shrinks drastically to values well under that expected
for random sequences, thus underlying a clear counter selection of promoters at high
rearrangement rates (�gure II.10).
Finally, as �gure II.11 shows, the number and proportion of non-coding RNAs are also
strongly determined by the rearrangement rate. Actually, when simulations are grouped
by mutation rates, the number of ncRNAs scales as a power law of the rearrangement
rate � �gure II.11(a). At one extreme, when µr is very low, over nine RNAs out of ten do
not contain a single gene, while at the other extreme (high µr), genomes contain only a
few ncRNAs, and in some cases, none at all.

4 Discussion

In the experiments we have presented here, 50,000 generations of evolution have pro-
duced very diverse organisms. Moreover, the di�erent genomes that evolved reproduce
the whole range of genome organizations observed in real organisms. At one extreme, or-
ganisms having evolved under high rearrangement rates present prokaryote-like genomes:
very short and dense genomes bearing only a few genes usually transcribed through even
fewer mRNAs and having almost no non-coding RNAs. At the other extreme, under low
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(d) Average number of genes per operon

Figure II.9 � Number of (a): monocistronic and (b): polycistronic RNAs as a function
of µr. (c): proportion of operons among cRNAs and (d): average number of genes per
operon as a function of µr. Di�erent values for µm are reported as the shape of the points
(circles: 10−4, upwards pointing triangles: 5 × 10−5, plus signs: 2 × 10−5, multiply signs:
10−5, diamonds: 5×10−6, downwards pointing triangles: 2×10−6, stars: 10−6). Low values
of µr lead to genomes containing mainly monocistronic RNAs and a few simple operons.
High rearrangement rates lead to genomes having almost no monocistronic RNAs and
a number of operons comparable to that obtained at low rates. However, operons that
evolved at high µr are a lot more complex, containing way more genes than those evolved
at low µr.
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(a) Density of Terminators
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(b) Density of Promoters

Figure II.10 � (left): evolution of the density of terminators (a) and of promoters (b) in
the lineage of the �nal best individual of each simulation. (right): stabilized density of
terminators (a) and of promoters (b) computed as the mean value for last 10,000 ancestors
of the �nal best individual of each simulation. Di�erent values for µm are reported as the
shape of the points (circles: 10−4, upwards pointing triangles: 5×10−5, plus signs: 2×10−5,
multiply signs: 10−5, diamonds: 5 × 10−6, downwards pointing triangles: 2 × 10−6, stars:
10−6). While terminators are all the more counter-selected that µr is high, there seems
to be a threshold in µr under which promoters are favoured and above which they are
selected against.
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(c) Proportion of ncRNAs

Figure II.11 � (a): number and (b): proportion of ncRNAs as a function of the rearrange-
ment rate. (c): density of ncRNAs in non-coding sequences. ncRNAs are very numerous
at low µr while nearly absent at high µr. The density of ncRNAs in non-coding sequences
seems to be close to the density expected for a random sequence (the greater diversity
at high µr) can be explained by the small overall size of non-coding sequences in these
cases).

rearrangement rates, evolution tends to favour huge genomes with many mRNAs, both
coding and non-coding, the latter kind usually bearing one single gene. These genomes
also contain a huge proportion of excess DNA.
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Mutations, Rearrangements and Genome Structure

On the level of the genome, we have observed that both the local mutation rate and the
chromosomal rearrangement rate have a clear impact on the organization of the genome.
However, if it is mainly the rearrangement rate that determines the amount of non-coding
sequences (excess DNA), coding sequences seem to be governed by both the mutation and
the rearrangement rates. These observations point us to the error threshold principle and
the mutational burden hypothesis. It clearly appears that the local mutation rate imposes
an upper bound to the overall amount of coding sequences, regardless of non-coding se-
quences. An organism with a wider mutational target would undergo too many mutations
within its coding sequences, likely producing no neutral o�spring whatsoever. Then, be-
cause of the predominance of deleterious over bene�cial mutations, all of its o�spring
would probably have lost �tness. As we showed in the previous chapter, because large
duplications and large deletions involve DNA sequences whose mean size is proportional
to the size of the genome, non-coding sequences are mutagenic for the genes they surround
(Knibbe et al., 2007a). The rate at which these mutational events occur will then pro-
duce an error threshold-like e�ect: the rearrangement rate being �xed, a too large genome
would undergo too many duplications and deletions, leading to only less-�t o�spring,
similarly to what happens in coding sequences. Thus, the rate at which chromosomal
rearrangements occur constrains the overall amount of DNA (including non-coding se-
quences) under a certain threshold. Because the local mutation operators have almost no
e�ect when they occur in non-coding sequences (the probability that they might create a
new coding sequence de novo is very low), the local mutation rate has no e�ect on the size
of the non-coding sequences. Large duplications and deletions however, have the potential
of a�ecting the phenotype of an organism regardless of whether their breakpoints fall in
coding or non-coding sequences, they hence a�ect both coding and non-coding sequences.
All other mutation events have e�ects that are limited to coding sequences. As a con-
clusion, we could propose to consider local mutations as cis-acting genetic operators and
chromosomal rearrangements as both cis- and trans-acting operators.

Evolution of Operons

On the level of the organization of the transcriptome, we observed the emergence of operon
structures in every single simulation of this experiment. Since no horizontal transfer was
allowed in these experiments, the sel�sh operons theory can easily be discarded as an
explanation for the emergence of these operons. Indeed, horizontal transfer is a central and
necessary condition for the emergence of sel�sh operons. One of the remaining candidates
to account for the emergence of the observed operons is the co-regulation model, according
to which genomes should be more modular than expected at random, operons containing
preferentially functionally related genes. As for now, we did not test this hypothesis on
this speci�c dataset. However, in the dataset published in (Parsons et al., 2010b), we
tested this hypothesis by conducting a systematic pairwise comparison of the proportion
of functionally related genes both within operons and on the whole genome(two genes were
considered functionally related when the subset of biological processes they contributed to
overlapped in Ω). Given that these experiments were conducted in a stable environment,
no regulation was needed whatsoever. Yet, the results showed a moderate tendency of
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functionally related genes to be packed together on the same operon: the proportion of
pairs of functionally related genes was 1.26 times higher (median value) than the same
proportion on the whole genome. Although the e�ect was small, the ratio was signi�cantly
di�erent from 1 (non parametric sign test, p − value = 7 × 10−4). These results did not
allow us to conclude either in favour of or against the co-regulation theory, we hence look
forward to testing this hypothesis with the dataset we have presented here.
Figure II.9(c) showed us that the proportion of polycistronic mRNAs varied greatly ac-
cording to the rearrangement rate the organisms were subjected to. Furthermore, the
operons that evolved under high rearrangement rates tend to contain many more genes
than those having evolved under low rates. This is relevant when considered in the light
of the mutational burden hypothesis: as we have previously stated, the selection for a spe-
ci�c level of mutational robustness strongly constrains the size of the genomes. At high
rearrangement rates, long genomes lead to error catastrophe which yields a long term se-
lection of shorter genomes. On the other hand, the direct selection of the �ttest organisms
applies a strong pressure in favour of organisms having many genes, which allow them
to better approximate the environmental function. Taken together, these two pressures
result in the emergence of a composed pressure on the gene-density of the genomes. Now,
there are di�erent ways through which a genome can be densi�ed. At moderate rearrange-
ment rates, the optimal gene density can be achieved by simply acting on excess DNA, the
coding sequences remaining mostly untouched. When the rates are very high however, the
amount of excess DNA shrinks to almost nothing. A further compaction of the genome
can then be achieved for instance by making genes overlap (either on the same strand or
on both strands), which we indeed observed in most of the genomes that evolved in the
context of high rearrangement rates. But our results also suggest that evolution found
another way of further densifying the genome: getting rid of some of the transcription
signals (promoters and terminators) and sharing the remaining signals between several
genes.
Terminators in particular fragment the genome, forbidding the sequences directly down-
stream from them (on both strands) from being translated, until the next promoter. Each
terminator on the genome hence unmistakably leads to a loss of gene density. Deleting
a terminator that marked the end of a transcribed region will automatically cause this
transcribed region to be extended to the sequence downstream from it, until the next
terminator.
As for promoters, since they are relatively long (22 bp), mutualizing a promoter between
several genes would allow to spare some space on the sequence compared to the case where
each gene has its own promoter.
Let us consider two transcribed regions TR1 and TR2 de�ned by the promoters prom1
and prom2 and the terminators term1 and term2. Suppose that TR1 and TR2 are close
to each other on the same strand, each bearing one gene, respectively G1 and G2. The
destruction of term1 by any kind of mutation (for instance a point mutation or a small
deletion) would cause TR1 to be extended to the whole region between prom1 and term2,
that includes both G1 and G2, thus leading to the creation of an operon. G2 will then
be transcribed by both prom1 and prom2 which means that destroying prom2 will not
cause the loss of G2. Now in the speci�c case when prom1 and prom2 had the same
transcription rate, destroying both term1 and prom2 during the same replication would
have absolutely no e�ect on the phenotype, while creating an operon and deleting two
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monocistronic RNAs. Interestingly, the simultaneous deletion of term1 and prom2 can
easily be achieved by a single mutation, either a long deletion or even, if term1 and
prom2 overlapped, by a point mutation or an indel.

According to this series of events, the dynamics of promoters and terminators should be
similar, but a more common case is that only term1 is gotten rid of, which produces G2
to be translated twice, thus rising its expression level. This more simple event leads to
the transformation of a monocistronic RNA into an operon and can participate in the
counter-selection of terminators while having no impact on promoters.

Note that the opposite case (the deletion of only prom2, term1 remaining in place, would
cause the loss of G2 (that would become a pseudo-gene). Since the reversion of this
mutation is highly improbable,G2 is very likely to be irrevocably lost, which in turn is very
likely to be deleterious. There is however a case where the loss of G2 could become �xed
in the population: this would happen if the direct cost of losing this gene were counter-
balanced by the increase in robustness it may have caused. This is likely to occur at high
rearrangement rates where there is a very strong pressure towards genome compaction.
This overcoming of indirect selection could well be the explanation of the counter-selection
of promoters at high rearrangement rates. We indeed observe that the organisms having
evolved at high rearrangement rates are less well-adapted yet more robust than those
having evolved with low rates, suggesting this kind of e�ects. Still, asserting this hypothesis
would require further experiments and analyses to be performed.

Non-Coding RNAs

Although a very small proportion of eukaryotic genomes is translated into proteins, a
substantial fraction of these genomes is nonetheless transcribed, mostly into non-coding
RNAs. Not all of these ncRNAs have a known function and a great deal of e�ort is put
into identifying these putative functions. In our model, we have an absolute control on the
functions RNA can have. Speci�cally, in our model, ncRNAs have absolutely no function.
Yet, while they are seldom found on short and dense genomes, they are very common when
rearrangement rates are low, i.e. on large, mostly non coding genomes. Interestingly, they
are found at a proportion close to that which would be expected in a random sequence.
It hence seems that ncRNAs are naturally present in intergenic regions, constituting a
constantly available pool of substance that we know can acquire new functions in real
organisms (e.g. the post-transcriptional regulatory activity of micro RNAs). It is also
tempting to suggest that because ncRNAs are naturally present in any DNA sequence,
they constitute a good substrate for the appearance of novel genes, and hence that they
could be selected for in the long term because they promote evolvability. However this
question will require a precise analysis of the dynamics of gene acquisition for which we
will need to develop speci�c tools. As for now, we can only say that they are not selected
for since their proportion in large genomes is not greater than that expected in random
sequences.
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5 Conclusion and Perspectives

In this chapter, we have presented results that clearly reproduce features of genome organi-
zation as it is observed in real organisms, in particular the emergence of operon structures
that seems to be favoured in the context of high rates of chromosomal rearrangements.
The emergence of these operons speci�cally under high rearrangement rates points us to
the mutational burden hypothesis, where a second-order selective pressure for a speci�c
level of mutational robustness leads to genome streamlining.
We now plan to analyse the modularity of the genomes in these experiments and to
conduct further experiments using an extension of the model that includes explicit reg-
ulation of gene expression (R-Aevol, see next chapter) to determine to what extent the
co-regulation model can participate in the creation and maintenance of operon structures.
We also plan to conduct experiments allowing for horizontal transfer in order to test the
sel�sh operon hypothesis. Finally, we are looking forward to developing new tools to con-
duct detailed analysis of the precise mutations that went to �xation. This would allow us
to study in detail the dynamics of gene acquisition and, in certain conditions, gene loss,
that are of major importance to better understand both the dynamics of operon formation
and the putative role of ncRNAs as innovation hotspots.
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Chapter III

Indirect Selection and the Regulation of

Gene Expression

The results presented in this chapter have been published in Beslon et al. (2010b) and
Beslon et al. (2010a)

1 Introduction

Evolution provides living organisms with a way of adapting to their environment in the
long term. On the scale of an organism's lifetime, however, evolution is of little help. Dur-
ing its lifetime, an organism may be confronted with di�erent environments. An organism
able to react to environmental changes would then be better-adapted than one that isn't.
Evolution's answer to that takes many forms. One can of course think of one's sensing
organs as a patent example. However, bacteria usually lack a brain to analyze such signals.
A more universal answer to this need for a response to external changes is the regulation
of gene expression.
Genetic regulation networks are recognized to be one of the main control centres in cells
and organisms. They are also well known to be very complex and intricate throughout
many di�erent species. The conjunction of these two factors made the understanding of
these networks a very active �eld of research in the last few decades. A great deal of work
has shown that the structure of these regulation networks is far from random: regularities
were found at all scales, from small motifs (Alon, 2007; François and Hakim, 2004) to
global connectivity patterns (Barabási and Oltvai, 2004; Zhu et al., 2007). Understanding
these regularities and deciphering the emergent dynamics of these networks are among the
most fascinating challenges of modern biology and have been central questions of systems
biology ever since this research �eld emerged ten years ago.
Being a product of evolution, gene regulation networks have but little to do with en-
gineered networks: one can hardly identify independent modules that would undertake
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clearly de�ned tasks in the system. Rather, regulation networks were built by a process
of trial and error, yielding very intricate structures within which several functionalities
are often superimposed in overlapping sub-networks. Systems biology is often considered
a reverse engineering process applied to biological entities: observations are made regard-
ing the behaviour of the studied system in di�erent external conditions (and possibly, its
response to man-made perturbations � Ideker et al. 2006) in an attempt to uncover the
organizational principles of the system. However, when reverse engineering can usually
assume the system to have been conceived following reasonable conception rules and rea-
soning, it is not true when it comes to biological systems. Yet, evolution has its own rules:
it was shown, for instance, that under some speci�c conditions (e.g. cyclic environments),
evolution can produce an organized system, similar to what an engineer might come up
with (Alon, 2003; Kashtan and Alon, 2005). The existence of other general laws that
could govern the organization of biological networks depending on external conditions is
an open question. Our grand challenge is hence to identify the �language� that evolution
has created for regulation networks and how it can be translated from a structural de-
scription (i.e. the set of weighted links, motifs and modules) to a functional description
(cell behaviour � Wolf 2003).

These questions are very di�cult to tackle with real organisms, either because they re-
quire long and complex experimental setups or because results are di�cult to analyze
given the little knowledge available. As far as regulation networks are concerned, compu-
tational evolution has been used to investigate the evolvability of networks (Crombach
and Hogeweg, 2008) or the development of modular structures under cyclic environmental
conditions (Kashtan and Alon, 2005). One of the best-known models, namely the GRN
model, was proposed by Wolfgang Banzhaf (Banzhaf, 2003) and used to investigate the
emergence of speci�c topological properties in regulatory networks (Kuo et al., 2006).
More recently, Claudio Mattiussi and Dario Floreano proposed the �Analog Genetic En-
coding� framework (Mattiussi and Floreano, 2007) which was later on used to investigate
the modular structure of regulation networks (Marbach et al., 2009). Other authors have
used computational evolution in order to evolve small networks performing prede�ned
tasks as oscillators (Knabe et al., 2008) or switches (François and Hakim, 2004).

Here, we are particularly interested in exploring the putative e�ects of indirect selective
pressures on gene regulation networks. As we have previously stated, a strong indirect
selective pressure was identi�ed using the Aevol model, that constrains the size and struc-
ture of the genome to achieve a speci�c level of mutational variability of the phenotype.
Whether such a pressure can still be at play in a system in which an additional degree
of freedom is provided by a regulation process, and its implications on the network itself
are fascinating questions. To tackle these questions, the Aevol model was extended to in-
clude an explicit process of regulation at the level of transcription. This extended model,
called R-Aevol, was mainly developed by Yolanda Sanchez-Dehesa during her PhD thesis
(Sanchez-Dehesa, 2009). We provide here a description of the R-Aevol model followed
by two sets of experiments conducted respectively with a trivial and a demanding envi-
ronment. The results not only con�rm the second-order selective pressure that had been
previously observed with the Aevol model, but also show that this pressure can also drive
the size and complexity of regulation networks.
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2 Introducing Regulation in Aevol: the R-Aevol model

In real organisms, the regulation of gene expression can be achieved through several dif-
ferent mechanisms acting at di�erent stages of gene expression. The most famous and best
understood of these mechanisms was discovered by Jacob and Monod in 1960 along with
the operon structure (Jacob et al., 1960). The transcription of DNA into RNA can be
up- or down-regulated when some particular proteins called Transcription Factors (TFs)
bind to the DNA at speci�c sites upstream or downstream from the promoter, making it
either easier or more di�cult for the RNA-Polymerases to proceed to the transcription.
Regulation sites upstream from the promoter can either facilitate or impede the initiation
of transcription while regulation sites downstream from the promoter will preclude the
elongation of the RNA being synthesized. Now, in total absence of transcription factors
(i.e. when there is no regulation), the transcriptional activity of a prokaryotic promoter is
at its basal level or ground level (Struhl, 1999). The regulation of the transcriptional ac-
tivity of RNA-Polymerases, either up or down from the ground level, results in a variation
in the concentration of the corresponding RNA and subsequently in the rate of translation
of the genes it carries, �nally yielding a change in the encoded protein's concentration.
Whether the expression of a gene is up- or down-regulated depends on which site the
transcription factor is bound to and on the transcription factor itself. A transcription
factor that binds to the operator site (downstream from the promoter) will prevent the
RNA from being elongated, i.e. it will forbid the transcription to be completed, leading
to a down-regulation of the genes carried by this RNA. TFs that bind to a regulation site
upstream from the promoter will impact transcription initiation by either facilitating or
repressing the binding of RNA-Polymerases. TFs interacting with an upstream site can
then induce either an increase or a decrease in the expression of the corresponding genes.
R-Aevol is an extension of Aevol that includes a model of prokaryotic regulation in the
arti�cial chemistry. To model the interactions between transcription factors and promoters
in R-Aevol, we de�ned two binding sites for each promoter: the 20 base-pair long sequences
directly �anking the promoter. Preceding the promoter, the enhancer site will allow TFs
that bind to it to increase the transcriptional activity. The operator site, directly following
the promoter, will on the contrary produce a down-regulation of the promoter's activity
whenever a TF binds to it. In R-Aevol, whether a given protein is able to bind to a
speci�c site is determined by a value of �a�nity� between the Amino-Acid (AA) chain of
the former and the genetic sequence of the latter. More precisely, a protein can bind to a
given binding site if its sequence contains at least one regulation domain for this site. In
R-Aevol, regulation domains are de�ned as small 5 AA long motifs, each AA of which,
when aligned with the sequence of a binding site, has a strictly positive a�nity value with
the base quadruplet it faces (see �gure III.1). These individual AA-to-base-quadruplet
a�nities are given by an �a�nity matrix� B which is initialized once and for all at the
beginning of the simulation. Since the a�nity of a 5 AA motif with a regulation site is
computed as the product of values taken in B, the probability of any such motif actually
being a regulation domain of a given binding site will be determined by the proportion
of null values in this matrix. We hence de�ned a parameter of the model that makes it
possible to tune the proportion of values of B that will be forced to 0, the remaining
values being randomly �lled with values in [0, 1]).
The global a�nity of a protein with a binding site is that of its best regulation domain with



68 III. Indirect Selection and the Regulation of Gene Expression

Figure III.1 � (from Beslon et al., 2010b). Computation of the a�nity between TFs and
regulation sites. (1): the protein primary sequence slides in front of the 20-bp regulation
site and all 5-AA-long motifs are tested. (2): for each couple (AA, base quadruplet), the
binding value Bij is read in a binding matrix B (see main text for the initialization of the
binding matrix). (3): the binding strength, Sm, of the whole motif is the product of the
�ve Bij values and (4): the binding strength, Sp, of the whole protein is the maximum
strength over the L − 4 motifs it contains (L being the length of the protein primary
sequence). The regulatory activity of the protein p then depends on the global strength
value Sp: for a given promoter i, a protein p is aligned both upstream and downstream
from the promoter, resulting in two di�erent Sp values (Sp_up and Sp_down). The upstream
alignment enables us to compute the enhancing activity of the protein (Api = Sp_up) while
the downstream alignment gives its inhibition abilities (Ipi = Sp_down).

regard to this site. In other words it is equal to the maximum a�nity of all the possible 5
AA long motifs on the protein with the genetic sequence of the binding site. This value of
a�nity will determine the strength of the protein's in�uence on the transcriptional activity
of the promoter it binds to, either increasing or decreasing it depending on whether it can
bind to the enhancer site or the operator site (or sometimes to both).
Besides the ground level βi (equation III.1) of a promoter, which depends on how close its
sequence is to a consensus sequence 1, the transcriptional activity of a promoter depends
on the combined activity of the transcription factors that activate it (equation III.2), and
of those that inhibit it (equation III.3), Aji (resp. Iji) being the a�nity of protein j with
the enhancer site of the promoter i (resp. on its operator) and cj(t), the concentration of
protein j at time t.

βi = 1− di
dmax + 1

(III.1)

with di, the Hamming distance between this particular promoter and the consensus se-

1. The ground level of a promoter in R-Aevol corresponds to the level of expression of a promoter in
Aevol (see chapter I, section 5.1).



2. Introducing Regulation in Aevol: the R-Aevol model 69

quence and dmax, the maximum Hamming distance allowed for the sequence to be a
promoter.

Ai(t) =
∑
j

cj(t)Aji (III.2)

Ii(t) =
∑
j

cj(t)Iji (III.3)

The transcription rate ei over time of an RNA is then given by the Hill-like function:

ei(t) = βi ·
(

θn

Ii(t)n + θn

)
·
(

1 +

(
1

βi
− 1

)(
Ai(t)

n

Ai(t)n + θn

))
(III.4)

where n and θ are constant coe�cients that determine the shape of the Hill-function.
Finally, given the transcription rate, one can compute the protein concentration (for the
sake of simplicity, we assume here that the protein concentration is linearly proportional
to the RNA concentration) through a synthesis-degradation rule (equation III.5). Thus,
when a protein is regulated, its concentration is scaled up or down depending on its
transcription rate. 

ci(0) = βi

∂ci
∂t

= ei(t)− φci(t)
(III.5)

where φ is a temporal scaling constant representing the protein degradation rate.
At each time step, the regulatory activity of each protein over each promoter is computed
depending on the binding a�nity between the protein and the promoter's regulation sites
and on the concentration of the protein. Then, the concentrations are updated according
to equation III.5 on the basis of a simple synchronous Euler integration scheme. In the
current version of the model, the initial concentration of each protein is equal to the basal
level of the corresponding promoter. However, we are currently developing a new version
with inheritance, in which the initial protein concentrations of an organism are equal to
the �nal concentrations of its parent.
Because protein concentrations vary over time, the phenotype of an organism is also
de�ned dynamically as the possibility degree for each possible biological process at each
time step t. As in the Aevol model, the environment in R-Aevol is represented as a
phenotypic target. However, contrary to Aevol, organisms in R-Aevol �live� for a given time
throughout which the environment may itself vary. The environment is thus represented
similarly to the phenotype as the optimal possibility degree for each possible biological
process at each time step. The �tness of an organism is then computed according to
the combined metabolic errors of an organism with respect to the current state of the
environment at di�erent time steps. Moreover, external signalling molecules are introduced
into the organism at speci�c time steps (typically when the environment is changed), thus
modelling its sensing of the environment. These molecules are manually-designed amino-
acid chains, i.e. proteins. These proteins may or may not have a metabolic function, but
they must contain a regulation domain in order to be able to interact with the regulation
network.
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3 Gene Regulation Networks in a Trivial, Steady En-

vironment

Eventually, our goal is to use R-Aevol to understand how regulation networks evolve
depending on external conditions and on the complexity of the environment (e.g. number
of states, frequency or periodicity of environmental variations). R-Aevol makes it possible
to conduct evolution experiments in more or less demanding environments in which the
organisms have to sense the possible changes in the environment through �molecular�
signals. However, our �rst aim was to assess whether organisms evolving in simple steady
environments would evolve basic regulation networks (even though they are not necessary
in such constant environments). Another question we wanted to answer was whether the
indirect selective pressure that was identi�ed in Aevol would still be involved if organisms
were able to regulate the expression of their genes, providing them with a new degree of
freedom, and maybe an alternative path towards robustness or evolvability (Beslon et al.,
2010b).
To test this hypothesis, we repeated in R-Aevol, the experiments conducted in Aevol (see
chapter I, section 9.2 and chapter II). We left 18 independent populations of 1,000 individ-
uals to evolve in a constant environment (the same environment we classically use for the
experiments using Aevol � see �gure I.2), the phenotype of each organism being computed
during twenty time steps and its metabolic error corresponding to the mean gap during
the last ten time steps. Six di�erent sets of parameters were tested with three repetitions
each, where the only changing parameter was the common mutation/rearrangement rate
µmr, for which we tested the values 5× 10−6, 10−5, 2× 10−5, 5× 10−5, 10−4 and 2× 10−4

per base-pair per replication per type of mutation/rearrangement. Here, we could not
isolate the local mutation rate from the chromosomal rearrangement rate as was the case
in the experiments presented in the previous chapter. As R-Aevol requires a lot more
computational time than Aevol, testing all the possible combinations of these parameters
was impossible in a reasonable time. For the same reason, these experiments were con-
ducted for only 15,000 generations. The values we used in these experiments for the main
parameters are presented in table III.1.

3.1 Results

We analysed the structure of both the genomes and the regulation networks after 15, 000
generations. Again, we observed that many features of the evolved organisms are in�u-
enced by the mutation rate, the organisms having evolved under low rates of mutations
and rearrangements being much more complex than those having evolved under higher
rates. Figure III.2 shows the evolution of the metabolic error, the number of genes and the
size of the genome of the best individual of each simulation while the genomes (with the
genes they bear) of three representative organisms after 15,000 generations of evolution,
under low, moderate and high mutation/rearrangement rates are presented in �gure III.3.
These results con�rm those previously obtained using Aevol (without regulation � see
(Knibbe et al., 2007a), chapter I, section 9.2 and chapter II): organisms having evolved
under low rates of mutations and rearrangements have huge genomes containing many
genes (93 genes on the genome shown in �gure III.3(a)) while having a very high proportion
of excess DNA (�gure III.3(a): 97% of the genome). On the other hand, organisms having
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Parameter Value
N 1,000

nb_gener 15,000
init_length 5,000
init_method Clonal, One Good Gene

selection_scheme Exponential Ranking
c 0.995

α1 = 1.2;G1 : µ = 0.52;σ2 = 0.12
E =

∑
i

αiGi α2 = −1.4;G2 : µ = 0.2;σ2 = 0.07

α3 = 0.3;G3 : µ = 0.8;σ2 = 0.03
env_sampling 300

µpoint
µs_ins
µs_del
µdupl µmr ∈ {5× 10−6, 10−5, 2× 10−5, 5× 10−5, 10−4, 2× 10−4}
µdel
µinv
µtrans

max_indel_size 6
Wmax 0.033333333

Table III.1 � Parameters used in the experiments presented in this section. Mutation and
rearrangement rates take their values among those proposed, one common value for each
types of operators.

undergone very high rates of mutations and rearrangements have very small genomes
containing only a few genes (38, resp. 16 genes on the genomes shown in �gure III.3(b))
and almost no non-coding sequences (�gure III.3(b): 65% and 37% of the genome for
moderate and high µmr respectively).

In �gure III.4, the amount of both coding and non-coding sequences of the best organisms
after 15,000 generations are presented. Once more, as we had previously observed, the
overall size of both the coding and non-coding sequences scale as a power law of the
mutation/rearrangement rate, the slope for the coding sequences being quite mild while
that for the non-coding sequences re�ects a super-linear relation.

The analysis of the regulation networks is of great interest: in the experiments presented
here, the environment is constant during the whole lifetime of the organisms, one could
hence expect scarcely to observe any regulation networks at all. However, despite this lack
of direct pressure for regulation, many evolved organisms present very large and complex
regulation networks. In fact, we observed that the size and complexity of the networks
were clearly correlated with the mutation/rearrangement rate, high values of µmr leading
to very small and scarcely connected networks while low values of µmr produce large
and complex networks. Figures III.5 and III.6 show examples of networks having evolved
under low, moderate and high mutation rates. These networks correspond to the genomes
presented in �gure III.3.
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(a) Evolution of the metabolic error (b) Evolution of the number of genes

(c) Evolution of the size of the genome

Figure III.2 � (from Beslon et al., 2010b). Evolution of (a): the metabolic error, (b): the
number of genes and (c): the size of the genome of the best organisms during 15,000 gen-
erations. Grey scales represent the mutation/rearrangement rates, light grey corresponds
to µmr = 2×10−4 and black, to µmr = 5×10−6. Again, all these measures depend on µmr.
Note that even after only 15,000 generations, all the simulations seem to have stabilized.

The total number of genes being negatively correlated with µmr (as it is the case in
experiments conducted with the Aevol model), it is not surprising that the size of the
networks follows the same kind of relation. However, it is interesting to note that the
number of transcription factors (TFs � genes whose products regulate the transcriptional
activity, at least at one promoter site) increases faster than the total number of genes
when mutation rates are lowered � �gure III.7(a). In the smallest network � �gure III.6,
right �, only two genes out of 16 are TFs, corresponding to only 12.5% of genes. In the
network having evolved under a moderate µmr, 16 genes out of 38 are TFs (42%) while
in the largest network � �gure III.6 �, 64 genes out of 93 are TFs (69%). In other words,
there is a greater proportion of TFs when the mutation rate is low than when it's high. As
shown in �gure III.7(a), both the number of genes and of TFs seem to scale as power-laws
of the mutation/rearrangement rate, the slope for TFs being steepest. This trend is even
more clear if we consider only �pure TFs� (proteins that have a regulatory activity but no
metabolic contribution � �gure III.7(b)).
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(a) A low mutation rate (µmr = 5 × 10−6) leads to large genomes (here 120583 bp) with huge
non-coding regions (here 97% of the genome).

(b) A medium mutation rate (left, µmr = 5 × 10−5) leads to medium size genomes (here 4964
bp) with large non-coding regions (here 65% of the genome). A high mutation rate (right, µmr =
2× 10−4) leads to smaller genomes (1180 bp) with smaller non-coding regions (37%).

Figure III.3 � (from Beslon et al., 2010b). After 15,000 generations, the genomes range
from large ones (a) to intermediate and small ones (b) depending on the muta-
tion/rearrangement rate µmr. These di�erences are due to robustness and evolvability
constraints: large genomes are not maintained when organisms face high rearrangement
rates. On the contrary, under low rates, large genomes are more evolvable (see (Knibbe
et al., 2007a) and Discussion). On each �gure the circle represents the whole genome (scale
is di�erent on each �gure). Grey arcs represent the coding regions (the grey level code
is arbitrary, similar grey levels representing similar metabolic functions (i.e. proximity in
the Ω space � see Chapter I, section 4).

3.2 Discussion

The way regulation was modelled in R-Aevol allows for a direct comparison between
the structures that evolved in the model and similar structures in prokaryotes. Now,
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Figure III.4 � (from Beslon et al., 2010b). Amount of coding (grey circles) non-coding
(black squares) sequences for the best organisms of the 18 simulations at generation
15, 000 (log-log plot). Both values clearly scale with the mutation rate.

prokaryote genomic structures can be very diverse, with genome sizes ranging from ∼500
kb for the endosymbiont Buchnera aphidicola (Viñuelas et al., 2007) to more than 6 Mb for
Pseudomonas aeruginosa (Stover et al., 2000). Similarly, the number of genes ranges from
a few hundred (∼600 for B. aphidicola) to more than 5500 for P. aeruginosa. Variations
in the functional content of the genomes are also visible at the transcription level: some
organisms (e.g. B. aphidicola) are hardly able to regulate their transcriptional activity
(Reymond et al., 2006) while others display complex regulation networks made up of
thousands of tightly interconnected nodes (Stover et al., 2000). Comparative analyses of
bacterial genomes show the diversity of genomic structures in an even more striking way.
Through the analysis of annotated sequences, it was shown that the number of genes of
di�erent functional categories (genes involved in metabolic, regulation or transcription-
translation processes) scale as power-laws of the total number of genes in the genome
and that the exponents of these laws depend on the functional role of the family: the
number of transcription factors (TFs), in particular, scales quadratically with the total
number of genes while metabolic genes scale at most linearly with it � see (van Nimwegen,
2003; Molina and van Nimwegen, 2008) and �gure III.8. Moreover, this increase is also
correlated to the size of the genome (Konstantinidis and Tiedje, 2004). Note that, in the
model, there are no genes involved in translational activities since these functions are
coded in the core of the model. These results suggest that the intricacy of regulation
networks grows faster than the size of the network itself.
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Figure III.5 � (from Beslon et al., 2010b). Regulation network of the �nal best organism
of a representative simulation with low mutation/rearrangement rates. After 15,000 gen-
erations of evolution with µmr = 5× 10−6, the best organism in the population presents a
relatively large and complex regulation network (93 genes and 73 TFs, 13 of which being
pure TFs). Solid lines represent activation links and dashed lines, inhibition links. Genes
having a metabolic activity are represented by ellipses. Hexagons represent genes without
any metabolic activity. Genes that have a regulatory activity (outgoing edge) are tran-
scription factors (TFS). Then hexagons with outgoing edges are pure TFS. This network
was generated using the graphviz software.

The question of the origin and universality of such scaling laws remains open (Cordero
and Hogeweg, 2007; Molina and van Nimwegen, 2009). Some evolutionary models based
on gene duplication and deletion can produce power-law relations (Luscombe et al., 2002;
Foster et al., 2006) but these models directly consider the mutations that went to �xation
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Figure III.6 � (from Beslon et al., 2010b). Regulation networks of the �nal best organ-
isms of a representative simulation with respectively moderate (left) and high (right)
mutation/rearrangement rates. After 15,000 generations of evolution with respectively
µmr = 5 × 10−5 and µmr = 2 × 10−4, these organisms present networks of respectively
medium complexity (left � 38 genes and 18 TFs) and low complexity (right � 16 genes and
2 TFs). Solid lines represent activation links and dashed lines, inhibition links. Genes hav-
ing a metabolic activity are represented by ellipses. Hexagons represent genes without any
metabolic activity. Genes that have a regulatory activity (outgoing edge) are transcription
factors (TFS). Then hexagons with outgoing edges are pure TFS. These networks were
generated using the graphviz software.

in the population, without distinguishing the respective in�uences of the various under-
lying processes (genetic drift, natural selection, mutational biases). However, the classical
hypothesis is that the scaling has a selective origin. It is often assumed that these scaling
laws result from a selection process depending on the organisms' lifestyle: complex envi-
ronments would require the coordination of multiple metabolic pathways (Cases et al.,
2003). Alternatively, it was argued that any increase in the genetic repertoire of an or-
ganism (e.g., a new metabolic pathway) generates a need for new transcription factors in
order to regulate its activity within the existing metabolism (Maslov et al., 2009).
Actually, despite the tremendous advance in the �elds of genomics and transcriptomics, it
is still not clear whether these scaling laws result from selective constraints (e.g., selection
for integrated networks), from the intrinsic dynamics of the evolutionary process or from
any other mechanism still to be revealed (Molina and van Nimwegen, 2009).
As shown in �gure III.9, our experiments with R-Aevol reproduce qualitatively the scal-
ing laws observed in the prokaryotic kingdom (Cases et al., 2003; van Nimwegen, 2003;
Konstantinidis and Tiedje, 2004; Molina and van Nimwegen, 2008). At one extreme, small
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Figure III.7 � (from Beslon et al., 2010b). Number of genes having a metabolic activity for
the �nal best organisms of each simulation (black squares). Grey circles represent either
the number of transcription factors (a) or the number of pure transcription factors (b).
Both values clearly scale with the mutation rate but the number of TFs grows faster than
the number of genes.

genomes with only a few genes hardly have any regulation connections between the genes
they bear. At the other extreme however, large genomes result in large and complex regu-
lation networks within which many genes interact with one another in a very intricate way.
Both the number of metabolic genes and of TF-coding genes scale as power-laws with the
total number of genes. However, while the former scales at most linearly, the latter shows
a super-linear scaling � �gure III.9(a) �, going up to a quadratic scaling when considering
pure TFs � �gure III.9(b).

Since, in our experiments, all the organisms evolved in an identical steady environment,
the di�erences we observed in the complexity of either the genomes or the regulation
networks cannot have been caused by environmental conditions. The only di�erences
throughout our simulations was the mutation rate, that ranged from a very high rate
(µmr = 2× 10−4) to a low one (µmr = 5× 10−6). As �gures III.3 through III.9 show, the
mutation rate is a strong determinant of the complexity of an organism. Using the Aevol
model, it has already been shown that this scaling of the genome size, amount of non-
coding DNA and number of genes with respect to the mutation/rearrangement rate are
the consequence of an indirect selection of those lineages whose genomic structure allow
for an appropriate level of mutational robustness (see (Knibbe et al., 2007a), chapter I,
section 9.2 and chapter II). Figure III.10 shows the fraction Fν of neutral o�spring of
the �nal best individual of each R-Aevol simulation. As in the previous experiments, this
fraction seems to be close to that leading to the production of one neutral o�spring per
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Translation

Regulation

Metabolism

Figure III.8 � (from Molina and van Nimwegen, 2008). Number of protein-domains asso-
ciated with functional categories translation, metabolism and regulation as a function of
the total number of domains in the genome for which a functional annotation is available.
Each dot corresponds to a fully-sequenced microbial genome.

generation (FνW ≈ 1 with W the average number of o�spring of the best individual in
the population), although for very low values of µmr, Fν seems to be under this value of
1
W
. These low values of Fν could be explained by a high homogeneity of the population,

but further tools will need to be developed for this hypothesis to be asserted.
In fact, all the scaling laws observed in this experiment stem from this long-term pressure,
and more speci�cally on that exerted on the number of genes. Indeed, as the number of
genes is drawn up, the number of promoters also increases 1, resulting in a super-linear
growth of the number of putative gene-promoter associations. Because in the model,
the regulatory activity of a protein is computed through a combinatorial algorithm that
associates protein primary sequences with the sequences of promoter binding sites, any
increase in the number of coding RNAs (RNAs containing at least one gene) comes along
with an increase in the number of potential targets for each protein bearing a regulation
domain. Indeed, each TF binding site being a 20-bp long sequence, the probability of
having exactly the same sequence for di�erent binding site is quite low, even when several
promoters are homologous, created by duplication-divergence, because they diverge very
quickly. The consequence of this increase in potential targets is that any protein containing
at least one regulation domain has a greater probability of actually regulate something in

1. Even though it was not measured in this speci�c experiment, the results presented in chapter II
suggest that the number of RNAs bearing at least one gene should increase slightly faster than the number
of genes when the mutation rate is lowered.
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Figure III.9 � (from Beslon et al., 2010b). Number of genes involved in metabolism (black
squares) and in the regulation process (grey circles) as a function of the total number of
genes in the genome (best organisms of the 18 simulations at generation 15, 000). Grey
circles represent either the number of transcription factors (a) or the number of pure
transcription factors (b). Dash lines show power-law �ts.

a large genome than in a small one.
R-Aevol thence appears as a null model in which links in the networks are added with an
almost constant probability when the number of gene-promoter pairs increases 1. Conse-
quently, in this model, the scaling of the number of genes because of mutational robustness
constraints naturally leads to a super-linear increase in the number of regulatory nodes.
Whether a similar mechanism can explain the quadratic growth of Transcription Factors
observed by van Nimwegen (2003) and Molina and van Nimwegen (2008) is an open
question. Since real transcription factors have one or more DNA-binding domains that
are well de�ned units on the structural, functional and evolutionary level, it is not clear
whether such combinatorial process is at work in real genomes. Yet, several authors have
reported the combinatorial properties of the binding between TFs and their DNA targets.
According to Itzkovitz et al. (2006), the number of degrees of freedom of the binding
mechanism can partly account for the increase in the number of TFs. Moreover, it is also
known that TFs can bind to a broad spectrum of binding sites with di�erent a�nities and
change targets widely among species (Balleza et al., 2009).
Maybe the most striking result of our simulations is that the super-linear growth of the

1. At one stage, if a great variety of the possible binding site sequences are present in the genome,
this process should reach a saturation point. Then adding a promoter would be less likely to cause the
creation of a new target sequence. However, this �saturation point� is much higher than the number of
genes/promoters we observed in our simulations.
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Figure III.10 � (from Beslon et al., 2010b). Fraction Fν of neutral o�spring of the �nal
best organism for each simulation. These values were estimated by forcing the �nal best
organism of each run to reproduce itself 10,000 times (with the same mutation rate as
during the run) and by counting the number of o�spring that have the same �tness as
their progenitor. The grey area represents organisms whose fraction of neutral o�spring
is lower than the value leading to an average of one neutral o�spring per generation.

number of TFs is also observed for pure TFs. Indeed, pure TFs do not directly contribute
to the metabolism, their only impact on the phenotype of the organism happening through
the variations they can cause in the concentration of other proteins. Since, in these exper-
iments, the environment is constant over time, an organism could be well adapted with
no regulation at all. It is hence surprising to observe a signi�cant number of pure TFs in
these simulations and even more that their number scales super-linearly with the number
of genes. In fact, pure TFs scale more than quadratically with the number of genes (�gure
III.9). One can propose di�erent hypotheses to explain the appearance and �xation of
pure TFs. They can appear due to random mutations but they most likely result from
duplication/divergence events (e.g., gene copies that lose their metabolic activity while
retaining their regulation activity). The interesting question is why evolution maintains
such genes in the simple environment where our organisms live. One can assume that,
when the number of genes increases, there is a need for more regulation in order to po-
sition the attractor of the network more precisely in a space in which the number of
dimensions increases (Maslov et al., 2009). In this hypothesis, pure TFs could be directly
selected for. Alternatively, one can suppose that they are indirectly selected; however,
their contribution to the robustness/evolvability balance is very di�cult to assess. They
can contribute to the organism's robustness if they have a canalizing e�ect. They can also
contribute to the organism's evolvability by enabling small mutational variations that
may be more likely to be positive than mutations in metabolic genes. In this hypothesis,
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pure TFs would be conserved because their mutation can �nely tune the activity of their
target proteins without changing the metabolic processes these targets are involved in.

4 Gene Regulation Networks in a Complex Environ-

ment

The results we have presented in the previous section show that, in a simple case, i.e.
in a steady environment in which regulation is not mandatory and hence the regulation
network itself is incidental, the mutation rate is a strong determinant of the size and
complexity of both the genome and the regulation network. The extension of this result to
complex environments is still to be done. Indeed, a full campaign of experiments using the
R-Aevol model in complex environments would require the R-Aevol code to be optimized,
which is currently under progress. Yet, we conducted a limited experiment using a single
set of parameters to explore the structuration of gene regulation networks in the case
of non-trivial environments. The results show that the evolved networks are much more
complex than is necessary. In fact, the complexity of the network was such that we had to
use data-mining tools to unravel its dynamics. This suggests that, as is the case in trivial
environments, the complexity of the network is at least partly driven by indirect pressure
towards a speci�c level of mutational variability of the phenotype.
Here, we present this simple experiment and describe the procedures we used to decipher
the dynamics of the complex regulation network that evolved in the model. We conducted
gene knock-outs experiments, a method inspired by �wet� biology, to produce data that
could subsequently be analyzed by a data-mining algorithm in order to help us understand
the behaviour of the network.

4.1 Experimental Setup

Using the R-Aevol model, we let 3 di�erent populations of 1,000 individuals evolve for
40,000 generations under a moderate mutation/rearrangement rate (µmr = 10−5 per mu-
tation type per base-pair) and a mild selective pressure in a dynamic environment. This
environment (identical throughout generations) was divided into two periods of 10 time
steps each within the lifetime of an organism. During the �rst period of 10 time-steps, the
environment was identical to the one we used in all the previous experiments presented in
this thesis (see �gure I.2), then, during the second period, the environmental target was
modi�ed, one of the lobes of the environment being removed, and an external signalling
protein was introduced in the system so that the virtual organisms can �sense� the en-
vironmental change. Organisms were evaluated twice (once at the end of each period),
meaning that, in order to be well-adapted, the organisms must evolve a reaction to the
environmental perturbation through an e�ective regulation network connected to the sig-
nalling protein. Figure III.11 shows a typical phenotype evolved under such conditions.
The values we used in these experiments for the main parameters are presented in table
III.2.
In all three simulations (which will henceforth be referred to as S1, S2 and S3), the
organisms progressively acquire new genes that are connected in the regulation network
in such a way that the proteome ful�ls the regulation task the organisms are selected for
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Parameter Value
N 1,000

nb_gener 40,000
init_length 5,000
init_method Clonal, One Good Gene

selection_scheme Linear Ranking
η+ 1.998

α1 = 1.2;G1 : µ = 0.52;σ2 = 0.12
E =

∑
i

αiGi α2 = −1.4;G2 : µ = 0.2;σ2 = 0.07

α3 = 0.3;G3 : µ = 0.8;σ2 = 0.03
env_sampling 300

µpoint
µs_ins
µs_del
µdupl µmr = 10−5

µdel
µinv
µtrans

max_indel_size 6
Wmax 0.033333333

Table III.2 � Parameters used in the experiments presented in this section. Mutation and
rearrangement rates take their values among those proposed, one common value for each
types of operators.

(�gure III.12). After 40,000 generations, we focus on the best individual of each run. They
all show complex regulation networks with 51 (S1), 34 (S2) and 58 (S3) genes respectively.
These genes are connected by hundreds of links, but while the number of genes is only
slightly variable from one simulation to the other, the number of connections strongly
di�ers: network S1 has 328 connections, S2, 153 and S3, 908. Note that there is no direct
correlation between the size of the network and the metabolic error: S2, having the smallest
network, has a better �tness than S1 which is much larger (�gure III.12). Figure III.14
(squared part) shows the variation of protein concentration of the best �nal individual
in S1 1. One can easily see that, at time t = 10 (i.e., when the signalling protein is
introduced) and t = 20 (i.e., when this signal is switched o�), the protein concentrations
quickly change to stabilize on new values. When looking at the phenotype (�gure III.11),
we see that the signalling protein triggers a reorganization of the phenotype, one lobe of
the phenotype vanishing from t = 10 to t = 20, thus following the environmental change.
When looking at the genetic networks created by evolution (�gure III.13), the complexity
of the network is striking and is way over that needed to complete the task (the envi-
ronment is made up of only two states and the organisms need not be bistable since the
external protein is present throughout the whole second period). Again, the complexity

1. These measures were obtained by simulating the life of the organism during 30 time steps, the
external signal being introduced at t = 10 (as it was during the evolution), and taken away at t = 20.
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Figure III.11 � (from Beslon et al., 2010a). At each time step t the phenotype is expressed
as the e�cacy of the organism in performing the metabolic functions in the abstract set Ω.
Here, at time t = 10, an external signal is sent to the organism which reacts by modifying
its metabolic pro�le. The metabolic error is measured at t = 10 and t = 20

of the network appears to be mainly driven by the rates of mutation and rearrange-
ment. Now, it clearly appears that the dynamic behaviour of the network is impossible
to decipher directly from the network structure. Thus, when analyzing the results of our
experiments, we face the same problem as practitioners do with real biological networks:
we need automatic mining algorithms to help us understand the structure of the networks
and link it to their dynamic behaviours.
Going one step beyond, we decided to perform, with our in silico organisms, the same
experiments biologists do with real bacteria: we generated mutant variants in which single
genes are invalidated one at a time (KO-mutants, section 4.2) and measured their tran-
scriptional activity. The resulting dynamic data can then be analyzed to understand the
structure of the regulation network using data-mining algorithms. Following this idea, we
propose to use this data as a benchmark, available for the scienti�c community to test
knowledge discovery algorithms 1.

4.2 Gene Knock-Outs in Digital Models

Gene Knock-Out (KO) (Galli-Taliadoros et al., 1995) is a widely used technique in molec-
ular biology. It provides geneticists with an insight into complex mechanisms, focusing

1. All data are available on Internet: http://liris.cnrs.fr/guillaume.beslon/IDAj.data/
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Figure III.12 � (from Beslon et al., 2010a). Evolution of the organisms during 40000
generations. Left: Simulation S1. Right: Simulations S2 (top) and S3 (bottom). Left axis:
metabolic error (black decreasing line). Right axis: number of genes (light grey) and genes
which do not contribute to the metabolic activity (dark grey). The increasing number of
non-metabolic genes in the second stage of the evolutionary process is characteristic of
the recruitment of pure Transcription Factors (TFs).

on the contribution of a particular gene or set of genes. It consists in producing a mu-
tant lineage in which a targeted gene is invalidated (�knocked-out�), thus preventing the
corresponding protein from being produced by the organism under study. The phenotype
of the mutant organism is then compared to the original one (the �wild-type�) with the
objective of understanding the role of the knocked-out gene in the organism.
Using KO mutants, both the direct phenotypic contribution of a given protein and its
role in the regulation network can be studied. To study the network, one needs to focus
on transcriptome data that gives information about the expression of genes. Systemati-
cally knocking out every gene within a genome allows the geneticists to carry out broad
comparative studies that could shed light on the complex structure of gene networks (Gu
et al., 2003). Indeed, knock-outs can be used to create perturbations on a gene network
in order to help infer its hidden structure (Hecker et al., 2009). However, the systematic
knock-out of genes in any genome, even the smallest, yields a vast amount of data that
is very di�cult to process �by hand�. It is hence necessary to develop data mining tools
that can help analyse knock-out data (Geier et al., 2007).
In silico models have the advantage of providing us with access to any piece of data we
might need in order to understand the system's behaviour, even after the experiment
is �nished. They are hence particularly suited to generate benchmark datasets for data
mining methods. We simulated a systematic knock-out process on the evolved organism
from simulation S1, generating time series representing the concentration of proteins over
time for each gene's knock-out. We measured these concentrations during 30 time-steps,
the external signal being present during the middle 10 time steps. Figures III.14 and
III.15 show some examples of mutant behaviours represented by variations of protein
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Figure III.13 � (from Beslon et al., 2010a). Structure of the regulatory network after
40, 000 generations (experiment S1). The network contains 51 genes, 4 of which being pure
transcription factors (hexagons, genes 17, 35, 38, 49), the remaining all having a metabolic
activity (ellipses). The signalling protein (dark grey diamond) is connected to the network
through a complex connectivity pattern whose behaviour is quite impossible to decipher
manually. Solid lines represent activation links. Dashed lines represent inhibition links.
This network was generated using the graphviz software.

concentrations (�gure III.14) and of the phenotype (�gure III.15). This set of data was
then used to understand the underlying gene regulation network thanks to an ad-hoc
mining algorithm.

4.3 Mining the KO sequences

A simple data-mining algorithm was developed by Christophe Rigotti as a test case for
the usability of our gene KO data for benchmarking purposes. As it is outside the scope of
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Figure III.14 � (from Beslon et al., 2010a). Variations of the concentration of each protein
over time in the wild-type organism of S1 (squared) and in �ve KO mutants. From top
to bottom and left to right: wild type, KO of gene 1, KO of gene 17, KO of gene 19, KO
of gene 20 and KO of gene 34. x axis: organism's life time (time steps). y axis: protein
concentrations (arbitrary units). Displayed mutants have been chosen because they show
clear di�erences when compared to the wild-type.

this thesis, I will provide here only a brief description of this algorithm; for more details,
please refer to Beslon et al. (2010a).
The objective of this method is to provide the expert with some information about genes
having similar KO e�ects. More precisely, the method aims at exhibiting groups of genes
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Figure III.15 � (from Beslon et al., 2010a). Phenotypes of the wild-type organism of S1
(squared) and of �ve KO mutants. x axis: life time of the organisms (time steps). y axis:
functional space. z axis: e�cacy of the organism in performing the function. Mutants are
the same as those shown on �gure III.14 (KO of genes 1, 17, 19, 20 and 34).

whose KO lead to similar changes in protein concentration values. This information is
obviously useful if we do not know the regulation network, to suggest genes that are
involved in the same regulation process. But such groups are interesting even when one
has access to the regulation network as it is the case here. Indeed, the intricacy of the
evolved networks makes it impossible to consider them frontally. In this case, identifying
groups of genes having a similar e�ect on the transcriptional patterns can help the expert
to gain some understanding of the underlying regulation processes.

The data describes a set of experiments, each of which corresponds to the KO of one single
gene. For each KO, we recorded the concentration of all the proteins during the whole life
of the organism (m = 30 time steps). We also have at hand an additional experiment used
as a reference, where no KO is performed. This experiment using the �wild type� organism
provides us with the �normal� protein concentrations. Let the genes be numbered from 1
to n and let us denote expi, with i ∈ [1, n], the data obtained for the KO of gene i. Then
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expi can be represented as a n×m matrix of concentration values cj,t, where cj,t denotes
the concentration of protein j at time t. Similarly, the wild type experiment denoted expwt
is also represented as a n×m matrix of concentration values.
The global mining process contains 3 main steps: discretization, identi�cation of values of
interest (within the concentration values) and extraction of groups of genes having similar
patterns regarding the identi�ed values of interest.

Discretizing and identifying values of interest First of all, the protein concentra-
tion values of each organism (wild type and KOmutants) are discretized into concentration
levels, the boundaries of which are determined after a quick visual inspection of the data.
Each element cj,t of each matrix expi (and of expwt) is then replaced by a discrete label of
the form (j, fd(cj,t)) where fd is the mapping function we use for the data discretization.
Then, given a threshold α, we retain as main concentration values (values of interest),
only the labels (j, fd(cj,t)) that appear both in the wild type experiment expwt and in
at least α percent of the KO experiments. The set of main concentration values thus
obtained is denotedM.

Finding groups of genes Let p be the number of main concentration values (i.e., the
size of M). We de�ne the p × n Boolean matrix L, each element lk,i of which is set to
one if the kth main concentration value has disappeared in the KO of gene i (recall that
every main concentration value is by de�nition present in the wild type), and is set to
zero otherwise. Note that no information is retained regarding the time of occurrence
of these main concentration values. Then, given an integer threshold σ, we extract the
sets of genes such that the KO of these genes have in common at least σ missing main
concentration values.
Finally, since we are interested in sets of genes that contain many genes and that share
many missing main concentration values, we assigned a rank to each of these groups
depending on both of these criteria.

4.4 Results

This mining process has been applied to the KO data obtained from the �nal best organ-
ism of simulation S1, whose network is shown in �gure III.13. Our data-mining process
identi�ed 75 groups of genes, most of which were actually subgroups of other � better
ranked � groups. After elimination of these subgroups, the focus was clearly put on two
groups of genes: {4, 19, 20, 26, 32, 38, 44} (group 1) and {17, 34, 37, 38, 49} (group 2). Fig-
ure III.16 shows a zoom on these groups taken from the original network (�gure III.13).
Using these two groups as entry-points into the otherwise very di�cult to understand
network, we were able to fairly easily understand the way this network works and how it
manages to respond to the appearance of the external signal. Indeed, looking closely at
the outgoing edges of the genes from groups 1 and 2, we can see that a subgroup of group
1 (genes 19, 20, 26, 32 and 44) is actually a clique, each gene from this subgroup activating
the others, Genes in group 2 however are not connected to one another. Yet, they do share
a common behaviour: they all inhibit the genes of the clique we have identi�ed in group 1
and most of them activate gene 4, which in turn activates genes from the identi�ed clique.
These observations enabled us to draw a sketch of the network in a way that is meaningful
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Figure III.16 � Zoom on the groups of genes that were identi�ed by the data-mining
algorithm. Genes from group 1 are shown in dark grey, genes from group 2 in darker grey.
Genes showed in light grey correspond to neither group. Note that gene 38 belongs to
both groups.

to a human being (�gure III.17). It is basically made up of two functional modules that
we were able to derive from the groups given by our mining process. The �rst module
(module A: genes 19, 20, 26, 32 and 44) is the clique we have identi�ed within group 1.
The proteins corresponding to these genes all code for a metabolic activity in the lobe
that has to be turned o� when the external signal appears. This module displays a motif
that is similar to a positive-feedback-loop (Alon, 2007). This module is directly inhibited
by the external protein as well as by the second module (module B: genes 17, 34, 37 and
49) which is a subset of group 2. Module B has a double negative e�ect on module A:
not only does it down-regulate A but the metabolic contribution of the proteins from B is
the repression of the very metabolic functions activated by proteins from A. The positive
regulation of module B on module A through gene number 4 seems incoherent but it
probably helps the organism to �ne-tune the expression of the genes of module A 1. It

1. This gene and the two modules form an incoherent Feed-Forward Loop � iFFL. Such a loop is
known to accelerate state switch (Alon, 2007). However, since in our case the organism is not evaluated
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is important to note that, while we might have been able to detect module A �by hand�
because it is a clique, we would surely not have discovered module B since its constituting
nodes are not connected with one another. We are facing a functional module whose unity
is important for the organism but which does not correspond to any structural module
in the network. Such a module would obviously have been missed by any link-pruning
module detection algorithm (Newman and Girvan, 2004). The emergence of such modules
during the evolution process, as well as its discovery by our KO-mining algorithm was a
surprise. We now plan to conduct similar experiments to test whether or not this type of
structure emerges repeatedly.

Figure III.17 � (from Beslon et al., 2010a). Sketch view of the network of experiment S1
(see �gure III.13 for the full network). The two groups identi�ed by the mining algorithm
are depicted by the grey ellipses. Module A (bottom) is composed of �ve genes forming
a positive-feedback-loop motif. Module B (left) is composed of four genes that are not
connected with one another: These genes ful�l the same role in the network although
they are not interconnected. Gene 38 can be considered as belonging to the same module
even though it does not activate gene 4. The external signal (grey diamond) triggers the
activity of module A. Vee-Arrows: Activations; Tee-Arrows: Inhibitions.

All the other genes in this network have little impact on the dynamics of the network.
Of course, knocking-out any metabolic gene will cause the metabolic functions it was
involved in to be either under- or over-realized depending on whether the gene was an
activating or an inhibiting gene. But the impact of these KOs on the concentration levels
of other proteins was limited, suggesting that their connection to the network was mainly
incidental.

until ten time steps has elapsed, meaning the network has ample time to switch, it is not clear whether
the iFFL has been selected to decrease the switch delay when the signal is perceived or simply to precisely
tune the module activity.
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5 Conclusion

In this chapter, we have presented an extension of the Aevol model, R-Aevol, in which an
explicit process of regulation of gene expression was introduced (Sanchez-Dehesa, 2009).
We then presented two sets of experiments we conducted with this model. The �rst set
of experiments we presented was conducted in a simple steady environment in which
regulation was not mandatory for an organism to be well adapted.
Our results show that the model still reproduces scaling laws observed in real organisms
at the genomic level. Furthermore, we observed that evolution produced organisms with
regulation networks way more complex than what is required to ful�l the task they were
selected for. Interestingly, the complexity of the regulation network itself seems to be gov-
erned by the same parameters that shape the genome structure: the mutation rate and
the rearrangement rate. We showed that these scaling laws re�ect fundamental principles
of bacterial evolution, namely the selection for an appropriate balance between robustness
and evolvability (Lenski et al., 2006). Indeed, our simulations show that the pressure for
complexi�cation of the network can be indirect, unrelated to di�erences in the environ-
ment or the organisms' lifestyle: even when facing identical environmental constraints, the
evolved structure can range from very simple life forms (with a reduced gene set and loose
connectivity) to very complex ones, the main determinant of the structure being �only�
the rates of mutations and rearrangements. Of course, this does not imply that organisms
sharing the same mutation/rearrangement rates will have a similar structure regardless of
the complexity of their respective environments. However, we can deduce from our results
that the molecular complexity of the organism will be bound by robustness constraints,
meaning that the mutation/rearrangement rate will remain a major factor in determining
organismal complexity.
The second set of experiments we presented in this chapter was conducted with a more
demanding environment, where regulation was indeed needed for an organism to be well
adapted. Considering the individuals having evolved with the same rates of mutations
and rearrangements from either sets of experiments, we observed that their respective
regulation networks had comparable characteristics, the number of genes, TFs and pure
TFs being of the same order. Even though the number of experiments we have at our
disposal to date is far from su�cient, these observations are very interesting, suggesting
that the complexity of regulation networks is strongly determined by indirect selective
pressures and that this pressure can be high enough to over-rule the pressure due to the
complexity of the environment. The improvements we have brought to the implementation
of the model will allow us to test this hypothesis more thoroughly in the near future. We
are looking forward to running full scale experiments using the R-Aevol model in more
or less demanding environments and with a wide range of mutation and rearrangement
rates.
Interestingly, using an ad-hoc data-mining process, we were able to decipher the behaviour
of the complex regulation network that evolved in the model. We discovered two groups
of genes that, after a simple complimentary analysis, provided us with a good insight into
the general functioning of the network (�gure III.17). The structures we discovered thanks
to our mining process show the great potential of the use of computational evolution for
benchmarking purposes. Indeed, the computational evolutionary process is able to surprise
us by creating unexpected, yet e�cient, structures when this can hardly be expected from



92 III. Indirect Selection and the Regulation of Gene Expression

traditional benchmarking tools based upon random graph generators (Mendes et al., 2003)
that cannot account for the evolutionary origins of real networks.
Overall, the R-Aevol model has great potential, both to be used as an in silico experi-
mental evolution platform to further understand the evolutionary dynamics of regulation
networks and to produce various datasets that will enable the scienti�c community to
test e.g. data-mining, phylogeny reconstruction or network inference algorithms. Besides,
since R-Aevol allows us to generate networks of variable sizes, we can produce collections
of benchmarks of variable complexity. We are con�dent that both directions can help
practitioners to better take up the challenges of evolutionary systems biology.
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Chapter IV

Homology-Driven Recombination in

Aevol

The results presented in this chapter have been published in Parsons et al. (2011).

1 Introduction

In the previous chapters, we have discussed causes and consequences of the second-order
selection of a speci�c level of mutational variability of the phenotype. We showed, in par-
ticular, that this indirect pressure is exerted among other things on non-coding sequences
because of chromosomal rearrangements. Indeed, non-coding sequences provide an ad-
ditional substrate for rearrangement breakpoints, thereby increasing the overall rate of
rearrangements (which can impact genes even when all the breakpoints are in non-coding
sequences).
In the original Aevol model, rearrangement breakpoints were randomly chosen. This mod-
elling choice was due to the great computational cost involved in alignment search. In real
organisms however, rearrangements occur preferentially at breakpoints that are similar in
sequence. For that matter, and because rearrangements are at the centre of the second-
order pressures we want to study, Carole Knibbe stated in the conclusion of her PhD thesis,
that �a �ner modelling of rearrangement mechanisms constitutes a priority� � translated
from French � (Knibbe, 2006). Indeed rearrangements are very powerful genetic variation
mechanisms that can hence have dramatic e�ects on the genome of the organisms, which
means they are very dangerous.
Rearrangements whose breakpoints are similar in sequence are called homologous rear-
rangements. By contrast, we call here nonhomologous rearrangements those occurring
between sequences of low similarity. It is tempting to think that, because homologous
rearrangements are partially directed, they could be less dangerous than rearrangements
occurring at random points.
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To investigate the role of homologous rearrangements in genome evolution, we extended
the Aevol model to introduce a sensitivity to sequence similarity in the rearrangement
process: in this extended model, a rearrangement is more likely to occur between similar
sequences (homologous recombination) but remains possible, although at a low probabil-
ity, when the breakpoints di�er (nonhomologous recombination).
Remarkably, this model of homology-driven recombination can also be used to model
horizontal transfer, where DNA is transferred between di�erent organisms. In this con-
text, the sensitivity to sequence similarity should allow for allelic recombination, which
should in turn provide a way for evolution to circumvent the problems of linkage disequi-
librium (hitchhiking), that is known to play a major role in indirect selection phenomena
(Sniegowski et al., 2000).
In this chapter, I will �rst present an overview of the main mechanisms responsible for
chromosomal rearrangements in prokaryotes. Then, I will introduce the alignment search
algorithm I have developed and integrated into the Aevol model. Finally, I will present
a set of experiments that allowed us to validate the model and to uncover an intricate
relation between local mutations, homologous rearrangements and nonhomologous rear-
rangements. As for questions regarding horizontal transfer, they will be addressed in the
next chapter.

2 Chromosomal Rearrangements in Prokaryotes

The two-complementary-strands structure of DNA is essential for most genetic mecha-
nisms, in particular that of DNA replication that is achieved through the separation of
the two strands which are subsequently complemented by newly synthesized strands. This
process of DNA replication is of an incredible complexity and, even though the dedicated
cellular machinery is very sophisticated, the synthesized sequences are not altogether free
of errors. Point mutation and indels are patent examples of these errors, and the fact
that the very enzyme responsible for the synthesis of the new strands (DNA polymerase
III), itself contains an error-correction (proofreading) unit (Lewin, 2007) re�ects their fre-
quency. But point mutations and indels are not the only mistakes that DNA polymerases
can make. When a DNA segment with a sequence similar to that being replicated is close
to the replication fork (where the replication takes place), the polymerase can actually
�jump� from one strand to the other and go on replicating the wrong sequence. Hence,
the sequence thus produced will be a kind of patchwork of di�erent sequences, or in other
words, a rearranged sequence. As shown in �gure IV.1, this kind of error can lead to large
duplications or large deletions (Higgins, 2005; Lewin, 2007).
Rearrangements can also be a side-e�ect of error-correction mechanisms. Being the sup-
port for the genetic information, DNA is very precious for the organism. It is nonetheless
subject to a lot of stress and continuously undergoes alterations of di�erent forms. To
counter these alterations, various error-correction mechanisms have evolved that can for
instance replace a mismatched base by the correct one, re-synthesize a missing part of a
DNA strand using the complementary strand as a template or even rejoin sequences that
have been cut on both strands simultaneously (Double Stand Break, DSB). It is the latter
case that interests us most because it can lead to a rearrangement. A DSB is an event
during which a DNA duplex is completely cut, yielding two independent free-ended DNA
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Figure IV.1 � During replication, the DNA polymerase sometimes make errors, �jumping�
from one strand to the next. This can lead to large tandem duplications or large deletions.

duplexes. When a DSB occurs, the cell must restore the integrity of its genetic material or
else it dies. Fortunately, DNA replication being continuously performed, most of the DNA
is present in several copies in the cell. It is thence possible to repair the damaged sequence
using one of its copies as a template. When a DSB is detected, exonucleases hydrolyse
the extremity of one of the damaged strands (the recipient), thus exposing a segment of
single-stranded DNA upon which RecA proteins will then bind. These proteins will allow
the single-stranded segment to invade a DNA duplex (the donor) whose sequence is similar
to that of the recipient, thus forming a D-loop. This D-loop will then be enlarged through
an elongation process similar to that of the main DNA replication process, that actually
synthesizes the segment that was missing on the former duplex. Once all the missing
segment has been re-synthesized, the displaced strand migrates to its former duplex and
the missing strand is re-synthesized. This �nally results in two duplexes attached by two
Holliday junctions (one at each extremity of the re-synthesized sequence). Depending on
the resolution of these Holliday junctions (through which sequences stay linked together)
and on whether the donor was indeed a copy of the missing fragment or just a similar
sequence, the result can be either a correctly repaired DNA duplex or, more likely, a pair
of recombinant DNA.
There are other mechanisms that can cause chromosomal rearrangements, in particular
site-speci�c rearrangements that can be caused by transposable elements and in particular
insertion sequences (IS) that are known to favour rearrangements in prokaryotes (Rohmer
et al., 2007). Insertion sequences are small DNA structures �anked by inverted repeats,
which bear a gene coding for transposase, an enzyme that allows the IS to be excised
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and reinserted elsewhere on the genome. The transposition process can sometimes cause
rearrangements as a side-e�ect, when two transposable elements are involved in the same
event, the sequence in between being excised along with the transposable element itself.

2.1 Modelling Rearrangements

Chromosomal rearrangements are hence the consequence of very complex mechanisms
which, were they directly implemented in an evolutionary model, would consistently ren-
der it intractable and unusable. However, despite the diversity of biochemical mechanisms
that can lead to chromosomal rearrangements, the conditions necessary to their occur-
rence as well as their e�ects on a chromosomal scale, are very similar. Indeed, most re-
arrangements are the consequence of errors, themselves being facilitated by the presence
of repeated sequences or similar sequences along the genome. The e�ects are also similar:
modi�cations in the number and the order of subsequences of the genome, that can be
either duplications, deletions, translocations or inversions (�gures IV.1, IV.2and IV.3) 1.
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The degradation of the segment [b; c] 
leads to its deletion from the genome. 

OR 
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The reinsertion of the segment [b; c] leads to its translocation. 
In the specific case presented here, the reinsertion occurs 
through an indirect repeat, leading to a complex translocation 
with sequence inversion. 

OR 
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The reinsertion of the segment [b; c] leads to its translocation. 
In the specific case presented here, the reinsertion occurs through the 
same direct repeat, leading to a simple translocation. 

Figure IV.2 � Chromosomal rearrangements can occur by means of some error-repair
mechanisms. A direct repeat in the genome sequence can lead to the excision of a segment
of the genome. Then, the excised segment can be either hydrolysed (producing a deletion
� top-right) or reinserted into the genome, leading to a translocation. If the segment is
reinserted using the same breakpoint as for its excision, the whole process will produce a
simple translocation, where the translocated segment is simply displaced (bottom-left).
If the breakpoint involved in the reinsertion of the segment is di�erent from the one
involved in its excision, the order of the sequences will not be maintained, producing a
�complex translocation� (bottom-right). Note that in both cases, if the second alignment
involves indirect repeats, the translocated segment will also be inverted.

1. Here, we modelled only in situ (tandem) duplications. Indeed, inserting the duplicated sequence
elsewhere would require another alignment to be found.
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Figure IV.3 � An indirect repeat in the genome sequence can trigger a large inversion
through error-repair mechanisms.

From there, we can model the rearrangement process at a mesoscopic level by considering
only these key principles, common throughout the di�erent mechanisms that can lead to
a rearrangement. The granularity of the model will hence be at the level of the rearrange-
ment itself, and the probability of a rearrangement occurring will directly depend on the
degree of similarity between the potential breakpoints. We thus need, in our model, a
way to detect and quantify sequence similarities, in other words, we need to de�ne an
algorithm that searches for homologies within the sequences.
In previous versions of the Aevol model, this sensitivity to sequences similarity had to be
abandoned because of the computational cost it implies.

3 Searching for homologies

Searching for homologies between sequences (mostly proteic or nucleic) is a central ques-
tion in the �eld of bioinformatics. This highly combinatorial problem is well known to be
very di�cult and, for over 40 years, a great deal of work has been dedicated to �nding
algorithms to solve it (Needleman and Wunsch, 1970; Smith, 1981; Wilbur and Lipman,
1983; Lipman and Pearson, 1985; Altschul et al., 1990).
The degree of similarity between two sequences can be quanti�ed thanks to a scoring
function, similar to an edit distance: the alignment score between two sequences will
hence depend on the number and the type of mutations (point mutations or indels) that
are necessary to switch from one sequence to the other. A substitution matrix is used to
determine the reward or penalty corresponding to each pair of residues 1 when placed in
vis-à-vis, and indels are accounted for by gaps in the alignments: one or more residues
from one sequence can be associated with nothing on the other sequences. This accounts
for either a small insertion on the �rst sequence or a small deletion on the second. The

1. The term �residue� refers to the unitary elements which the sequences are made up of. Nucleotides
and amino-acids are the respective residues of nucleic and proteic sequences.
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contribution of these gaps to the alignment score is usually composed of both a �xed cost
for opening the gap and a cost for its extension that depends of its length.
The result of an alignment search is often presented in the form of a dot plot, where two
compared sequences are plotted with respect to each other. In this kind of visualization,
alignments between the two sequences take the form of diagonals or collections of diagonals
linked together when gaps are allowed (�gure IV.4).
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Figure IV.4 � In the dot plot representation, the two compared sequences are plotted
with respect to each other. Then, local similarities between the sequences take the form
of diagonals, from bottom left to top right for direct alignments and from top left to
bottom right for indirect alignments. Examples of both gapped and ungapped alignments
are shown on the �gure.

3.1 Alignment Search, a (very) Brief Chronology

In 1970, Needleman and Wunsch proposed an algorithm based on dynamic programming
to perform a global alignment search(Needleman and Wunsch, 1970), i.e. that tries to
align every single residue from the sequences to be aligned. However, global alignments
are ill-suited for sequences of weak or partial similarity for which local alignment searches
have to be performed. It was only in 1981 that Smith andWaterman proposed their famous



3. Searching for homologies 99

algorithm for the local alignment search problem (Smith, 1981). This algorithm is also
based on dynamic programming. Both the Needleman-Wunsch algorithm and the Smith-
Waterman algorithm perform a complete search. Their time complexity is of O(mn).
Two years later, in 1983, Wilbur and Lipman presented a heuristic method (Wilbur and
Lipman, 1983) that was subsequently improved and became known as FASTP (Lipman
and Pearson, 1985) and FASTA (Pearson and Lipman, 1988). The idea is to �rst look for
�promising� subsets of the search space and then proceed to a near-complete search within
these narrower search spaces. In 1990, Altschul et al. pushed this idea further still and
came up with their Basic Local Alignment Search Tool � BLAST � (Altschul et al., 1990),
that was to be further improved, in particular with Gapped BLAST and PSI-BLAST
(Altschul et al., 1997). Even though FASTA and BLAST proceed in a slightly di�erent
way, the methods for identifying promising regions in the search space are similar: the basic
idea is that a biologically signi�cant alignment will contain small sequences that match
exactly or almost exactly. These small but strong alignments are respectively referred to
as k-tuples in FASTA and hits in BLAST; we will use the term hit for the remainder
of this thesis. Once all the hits have been found, they can be extended, meaning that
the sequences surrounding the hits are looked for in a attempt to further increase the
alignment score, i.e. to verify whether they belong to a biologically signi�cant alignment.

3.2 Searching for Alignments in the Context of Digital Genetics

BLAST and its extensions are very e�cient local alignment search tools. Today, BLAST
is probably the most widely used alignment search tool in the bioinformatics community.
However, even though it is very e�cient, �blasting� sequences remains nonetheless rela-
tively long (a few seconds). In the speci�c case of Aevol, the alignment search algorithm
has to be integrated into the evolutionary algorithm which means that it would have to
be performed at each replication to �nd the candidate breakpoints for rearrangements.
Now if a single BLAST of a whole genome on itself is not computationally prohibitive,
a systematic search before each replication would take a virtually endless computation
time 1, which makes it an ill-suited solution. Thus, we must consider other possibilities
that take advantage of the speci�cities of in silico evolution 2.
Since in Digital Genetics, genomes are algorithmically built (and not observed), one could
choose to represent them using an e�cient data structure. For example, structuring the
genome as a su�x-tree could have been a solution to reduce the computational time of
alignment searches. However, given the size of the genomes in Aevol (from a few hundreds
to a million bp), this would consistently have led to a memory size explosion. Besides, there
is no guarantee that this solution would have produced a substantial improvement. As a
matter of fact, the idea of taking sequence similarity into account in the rearrangement
process had been abandoned within the scope of Carole Knibbe's PhD because of the
forbidding computational cost it represented.

1. As an example, assuming that �blasting� a genome on itself takes only 1 second, the overall time
spent on alignment searches during a single typical Aevol run of population size 1,000 during 50,000
generations, would be of over one year and a half.

2. Homologous cross-over operators have been proposed in the context of Genetic Programming
(D'haeseleer, 1994; Poli and Langdon, 1997; Nordin et al., 1999; Langdon, 2000; Defoin Platel et al.,
2003; Defoin Platel, 2004). However these works aimed at optimization goals while we are interested in
studying the process itself.
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However, we can take advantage of another speci�c characteristics of digital genetics:
digital genetics frameworks are simulation frameworks, not data-analysis ones. Indeed,
all the algorithms mentioned above were designed to �nd all the biologically signi�cant
alignments between two sequences. In our speci�c case however, we do not need such
an exhaustive search; rather, we only need to �nd a few correct alignments to perform
a rearrangement. Depending on the type of the rearrangement considered (duplication,
deletion, inversion or translocation), only one or two alignments are needed. Moreover,
we want most rearrangements to occur between highly similar sequences so our need
for sensitivity is quite low. Thus our problematic is rather to �nd a few high-quality
alignments, and not all the moderately similar pairs of sequences. If this new formulation
does not solve our algorithmic question, it nonetheless allows us to widen the range of
methods available, among which some might prove better adapted to this particular case.

3.3 Intermittent Search Strategies

It is surprising that, while searching for sequence alignments is algorithmically di�cult,
alignments are nonetheless a central feature of many cellular processes. It would thus not
be too surprising to identify e�cient solutions for �nding alignments within these particu-
lar biological processes. It was shown for instance, that repressors (proteins that can bind
to promoter operator sites and thereby reduce the transcription rate) can localize their
target site way faster than would be possible in the context of either a three-dimensional
di�usion in the medium or a unidimensional di�usion along the DNA strands(Riggs et al.,
1970). A few years later, Richter and Eigen (1974) proposed that this high speed associ-
ation rate is due to the �unspeci�c binding of repressor to nonoperator DNA with subse-
quent di�usion along the chain�: the repressor, they suggested, alternated between stages
of three-dimensional di�usion in the medium and stages of one-dimensional di�usion along
the DNA molecule.
Search strategies such as this one, alternating between stages of intensive local search and
stages of fast, blind, movements between di�erent regions of the search space are referred
to as intermittent search strategies (Bénichou et al., 2011). Intermittent search strategies
are widely observed at di�erent scales in natural systems, particularly in animal and
human foraging behaviours (Viswanathan et al., 1996; Bénichou et al., 2005; Shlesinger,
2006; Brown et al., 2007; Edwards et al., 2007) or in target localization by chemicals (von
Hippel and Berg, 1989; Coppey et al., 2004; Bénichou et al., 2006). This kind of search is
indeed very e�cient and has been shown to be optimal in the case of persisting targets
(Viswanathan et al., 1999). So we based our alignment search algorithm on the principle
of intermittent search, using BLAST-inspired methods for local search stages.

4 An Algorithmic Model of

Intermittent Alignment Search

As we have previously stated, biochemical mechanisms that can lead to chromosomal
rearrangements are both complex and numerous. However, the modelling choices that
were presented in section 2.1 allow us to simplify these mechanisms while retaining the
biological plausibility of the model. Thus, the starting point of our model, the atomic event
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we will consider, is the identi�cation of an alignment between two DNA sequences. The
search for these alignments takes place within the evolution of a population of arti�cial
organisms. At each replication, the genome to be replicated will thus be searched for
both direct and indirect alignments to �nd the candidate breakpoints for rearrangements.
Direct alignments can lead to either duplications, deletions or translocations while indirect
alignments can only lead to inversions 1. This search will be conducted locally around
points assumed to be located in the same three-dimensional neighbourhood.
At any time during the life of a cell, its chromosome has a given spatial conformation.
A simple way of modelling this spatial conformation is to consider local neighbourhoods.
We can hence consider that there is a set of pairs of DNA segments that are physically
close together. The conformation of the chromosome being a dense supercoil, the three-
dimensional proximity of any two segments of the chromosome does not depend on their
relative positions on the sequence: in a �rst approximation, two diametrically opposed
segments on the sequence can be considered as likely to be neighbours in the three-
dimensional conformation than two segments that are close together on the sequence.
This independence allows us to model this phenomenon in a very simple way, namely
in the form of a random drawing of pairs of neighbouring points, following a uniform
distribution on the size of the chromosome. The number of pairs of points to be drawn
will depend on how densely packed the genome is, i.e. on its degree of supercoiling. We
will characterize this degree of supercoiling by a degree of vicinity, referred to as the
neighbourhood rate µn that we will assume to be constant over time and throughout the
entire genome. The number of pairs of points to be drawn will then be proportional to
the genome length: nb_pairs = L.µn.
This simple process enables us to implement the global search phase of our intermittent
search strategy (algorithm 1). Then, for each candidate pair of points, a local alignments
search will be performed to determine the existence of similarities between the surrounding
sequences, either in a direct or indirect sense. Figure IV.5 illustrates the intermittent
search strategy.
The surroundings of a candidate pair of points, i.e. the local search space, is presented
in �gures IV.6 and IV.7. It is assumed that, for each pair of neighbouring points, the
sequences within a given distance de�ned by the parameter half_length are face to face.
These sequences will be referred to as the working zone for the local search. It is also
considered that these two sequences can slip with regard to each other, within a certain
threshold �xed by the max_shift parameter. Then, each nucleotide that falls within
the working zone of one sequence will be tested versus its direct vis-à-vis as well as its
max_shift neighbours both upstream and downstream. This will produce an extension
on each side of the working zone to avoid border e�ects and guarantee that each nucleotide
that belongs to the working zone is tested versus the same number of vis-à-vis.
At the global level, this search process is hence the combination of a Monte Carlo pro-
cess, randomly drawing pairs of points within the genome, and of a local search process
between the zones surrounding each of these points. This global process is hence indeed
an intermittent search as we had previously proposed. However, although this type of
search seems well suited for our problem, the local search process is still problematic,
even though the search space will be small and of constant size and shape. We propose

1. Indirect alignments can also play a role in the reinsertion of a segment during a translocation as
shown �gure IV.2
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initial_nb_pairs← L ∗ µn
nb_pairs← initial_nb_pairs
while nb_pairs > 0 do

Draw 2 random positions pos1 and pos2
Draw type of rearrangement
if Inversion then sense← indirect
else sense← direct
Draw minimal alignment score for a rearrangement to occur
Search Alignment(pos1, pos2, sense, min_score)

if Alignment found then
Proceed to Rearrangement
Update L

end
nb_pairs← nb_pairs− 1
nb_pairs← nb_pairs

initial_nb_pairs
∗ L ∗ µn

end
Algorithm 1: Aevol Rearrangement Process Algorithm

here two local alignment search strategies, in which one allows for gaps while the other
does not.

4.1 Local Alignment Search Allowing for Gaps

The design of our local search algorithm allowing for gaps is based upon the principles
proposed in BLAST (Altschul et al., 1990) and more speci�cally in its extensions PSI-
BLAST and Gapped BLAST (Altschul et al., 1997). BLAST uses a heuristic that considers
that any biologically signi�cant alignment is very likely to contain small sequences that
align almost perfectly. It proceeds in two steps, the �rst consisting in a complete search for
these small but highly similar sequences (hits), and the second, in an attempt to improve
the score of these hits by extending them, which actually corresponds to checking whether
they belong to a signi�cative alignment.
The PSI-BLAST extension (Altschul et al., 1997) follows the idea that because the hit
extension stage is the most computationally costly, the number of hits to be extended
must be limited as much as possible while not sacri�cing the sensitivity of the whole
search process. In this perspective, it was proposed to consider pairs of hits, namely two-
hits, instead of single hits, a two-hit being made up of two hits that are on the same
diagonal within a prede�ned distance. Obviously, to preserve a similar level of sensitivity
while considering hits by pairs, the size of single hits must substantially be reduced, which
implies that single hits will be a lot more numerous. However, the number of two-hits,
and hence of extensions to be performed, will be substantially lower using this solution
than with the original algorithm. Hence, considering the respective time consumption of
hit generation and extension, resorting to two-hits proves to be a lot more e�cient.
The original BLAST algorithm does not consider gapped alignments explicitly; rather,
it considers sets of ungapped alignments and computes a statistical estimation of the
combined alignment. The Gapped BLAST extension was designed to directly consider
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Figure IV.5 � For each candidate pair of points (nb_pairs = L.µn with L, the size of the
genome and µn, the neighbourhood rate), a local search is performed to determine the
existence of an alignment of su�cient score.

gaps in the local search process. It was considered that, given the cost of opening a
gap in an alignment, it is only necessary to consider this eventuality for very promising,
(i.e. high score) ungapped alignments. Thus, although the computational time needed for
considering every possible gapped extension is prohibitive (it corresponds to a variant of
the Smith-Waterman algorithm), this exploration is seldom performed, yielding only a
mild additional cost to the overall search process.

Our algorithm follows the same general search scheme, �rst looking for hits and two-
hits, and then extending them. In our algorithm, the hit generation step is a complete
search of all the pairs of sequences of a given size that have a score greater than a given
threshold. Hits are looked for within the local search space (see section 4). Once all the
hits have been generated, they are confronted with one another to form two-hits, following
the idea of the PSI-BALST algorithm. However, this idea, combined with that of Gapped
BLAST, was pushed one step further: in our speci�c case, most rearrangements require a
very high score alignment to occur. Furthermore, the search process being included in the
evolutionary loop, it must be very computationally e�cient. For both these reasons, we
authorized at most one gap per alignment, this gap being opened only when it allows two
two-hits from di�erent diagonals to be joined. Using this method, the calculation times
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Working zonemax_shift max_shift

Extended zone

(a) Working zone and extensions.

max_shift

(b) Sequences are allowed to slide on each other.

max_shift

(c) Examples of vis-à-vis to be tested.

Figure IV.6 � (a): The local search space is de�ned as a working zone and two extensions
on each sequence. The working zone consists of the half_size nucleotides surrounding
the original point in both direction and the extensions, of the subsequent max_shift nu-
cleotides (half_size andmax_shift are parameters of the model). (b)(c): The sequences
are allowed to slide with respect to each other during the local search process. Thus, each
nucleotide within the working zone of a sequence will be confronted to 2 ∗max_shift+ 1
nucleotides of the other sequence, either from its working zone or from one of its exten-
sions.

are a lot shorter. Indeed, exploring gapped alignments on the basis of two two-hits has
a linear time complexity. Besides, these explorations are seldom performed because they
require two two-hits to be found within a short distance in the search space (though on
di�erent diagonals). The multiple-hits (either two-hits or pairs of two-hits linked by a gap)
are then extended to try and improve their score.

4.2 Ungapped Local Alignment Search

The ungapped local search algorithm is a lot simpler than the gapped one. Indeed, when
gaps are not allowed, the e�ective search space is substantially reduced. In fact, since the
local search space is rather small, it is reduced to a point where heuristics are not needed
any more and a complete search algorithm can be used. Each diagonal in the search space
is parsed linearly, each match between two nucleotides being rewarded one point and each
mismatch resulting in a penalty of two points.
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Figure IV.7 � The local search space seen in a dot plot fashion. The dark grey zone
corresponds to the working zone while light grey corresponds to the extension zones

4.3 Algorithm Improvements

Searching for alignments, either allowing for gaps or not, is computationally costly. A great
deal of e�ort was hence dedicated to optimizing the algorithm and the implementation
of both the overall search process and the local search. Most of these optimizations are
out of the scope of this dissertation, being purely technical and having no impact on the
model. However, one particular improvement of the algorithm does require our attention.
The probability of a rearrangement taking place between two given breakpoints depends
on the score of the alignment between the sequences around these points. However, in
biology, not all the similar sequences that happen to be close together in the nucleoplasm
will produce a rearrangement. From the point of view of the program, once the best
alignment in the local search space has been found, the corresponding score has been
computed, and hence prear is known, a rearrangement will occur if rand < prear (rand
being randomly drawn following a uniform distribution in [0, 1[). Note that this enables
to allow nonhomologous rearrangements to occur in a controlled proportion. Figure IV.8
shows probability of �nding an alignment of a given score on a random sequence as well
as the function prear(score) we used in these experiments. This particular function (see
equation IV.1) with α = 50 and λ = 4 yields a reasonable trade-o� between homologous
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and nonhomologous rearrangements.

prear(score) =
1

1 + exp−score− α
λ

(IV.1)

Obviously, whether rand is drawn before or after the alignment search will not change
anything. However, knowing its value before the search, we can compute the minimum
score needed for a rearrangement to occur in this particular context. It is hence possible
to direct the local search process and hence to speed it up: knowing the minimum needed
score, it is possible, instead of searching for the best alignment in the local search space, to
look for the �rst alignment with a score at least equal to this minimum. Besides, when the
required score is high, heuristics can be used to discard whole regions of the search space
that are not promising enough, i.e. when they don't seem likely to contain such a high
score alignment. Using the �rst �good enough� alignment instead of the best one in the
local search space is a modi�cation of the model. In fact, it probably is an improvement of
the model since high score alignments that are not locally optimal are no longer silenced
by the local optimum.

4.4 Performance Tests

The main goal of the work presented in this chapter was to design an alignment search
method fast enough to be integrated into an evolution cycle such as that used in Aevol.
Now, although on the global scale, the proposed intermittent search process allows a sig-
ni�cant reduction in the computational cost of alignment search, it still requires the local
search process to be very e�cient. Indeed, this local search will be performed many times
for each replication, in the context of the evolution of a whole population of individuals
for thousands of generations. This local search being repeated up to trillions of times
during a single simulation, any improvement of this search will have a great impact on
the overall computational time needed.
The complexity of a complete search for alignments between two sequences is such that
it is impossible to measure the execution times of such an alignment search between
long sequences such as whole genomes. For this reason, we ran the performance tests
speci�cally on the local search process, which represents the core of our algorithm. In order
to study the performance of the local search algorithms we have proposed, we developed
a benchmark algorithm that performs a complete search in the same search space as the
other algorithms. It is important to note that, although this benchmark indeed performs
a complete search, it has nonetheless been greatly optimized and is itself a lot faster than
a brute force algorithm would be.
Figure IV.9 shows the average computation time of one local search for an alignment with
a score of at least 50 between random sequences, as a function of the size of the search
space (determined by the half_length of the working zone) for all three algorithms (the
complete algorithm and the algorithms we propose, either allowing for gaps or not). Note
that since we used random sequences, alignments are seldom found, meaning that in most
cases, the entire local search space is covered. These measures hence correspond to worst-
case values. As expected, the measured computation times for each of these algorithms
are very di�erent: the intermittent search strategy allowing for gaps runs 15-fold faster
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Figure IV.8 � Probability of �nding an alignment of the corresponding score on a random
sequence (solid line) and probability of an alignment of the corresponding score to produce
a rearrangement (dashed line). Preliminary experiments allowed us to calibrate the func-
tion we used to obtain a reasonable trade-o� between homologous and nonhomologous
rearrangements.

than the complete search and the intermittent search without gaps, another 2.8-fold faster
than that allowing for gaps.
Let us consider these computation times in the context of a 50, 000 generation long simu-
lation in Aevol. Preliminary tests showed us that, using the function shown in �gure IV.8
to map alignment scores with rearrangement probabilities within a search space de�ned
by half_length = 50 and max_shift = 20, for a neighbourhood rate of µn = 5× 10−2,
the evolved genomes would have a length of approximately 10, 000 bp. We can then eval-
uate the overall number of local alignment searches to be performed during the whole
evolutionary process as the product

nb_generations× population_size× genome_size× µn = 2.5× 1011 (IV.2)

According to the corresponding values in our test case, simulating this evolution using the
complete search would then require almost 5 years, the intermittent search strategy al-
lowing for gaps would reduce the time needed to around four months and the intermittent



108 IV. Homology-Driven Recombination in Aevol

20 40 60 80 100

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Working Zone Half−Size

R
un

 T
im

e 
(s

ec
)

Figure IV.9 � Average execution time for a single local alignment search as a function of
the working zone half-size for solid line: the intermittent search strategy with no gaps
allowed, dashed line: the intermittent search strategy allowing for gaps andmixed line:
the complete local search algorithm.

search strategy with no gaps allowed, just over a month. As we have stated, these perfor-
mance tests were conducted using random sequences. These are hence worst-case values
and we expect simulations to be faster. However, even though our intermittent search
algorithm allowing for gaps is indeed very e�cient compared to the complete search, con-
ducting a full scale experiment using this search strategy would require way too much
computational power. We will hence conduct our experiments using the simplest model
that does not allow for gapped alignments.

5 Validating Our Homologous Rearrangements Model

5.1 Experimental Setup

In this chapter, we have proposed a computationally tractable model of chromosomal
rearrangements that accounts for the sensitivity of rearrangement mechanisms to sequence
similarity. To validate this model, we conducted a large-scale experiment of evolution
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in conditions comparable to those previously tested with the Aevol model. We let 60
populations of 1,000 asexual individuals evolve during 20,000 generations in near identical
conditions where the only changing parameters were the mutation rate (one common rate
µm for the three di�erent types of local mutations � tested values: µm = 5 × 10−6, 10−5,
5× 10−5 and 10−4) and the neighbourhood rate (µn, tested values: µn = 10−2, 5× 10−2,
10−1 and 5×10−1). The complete set of parameters used in these experiments is presented
in table IV.1. Note that in this version of the model where the rearrangement process
is driven by homology, the rearrangement rate is no longer a parameter of the model.
However, �gure IV.10 shows us that the spontaneous rate of rearrangements µr that we
observed was at least partly driven by the neighbourhood rate µn. Thus, by acting on µn,
we are still able to e�ciently drive the spontaneous rearrangement rate.

Parameter Value
N 1,000

nb_gener 50,000
init_length 5,000
init_method Clonal, One Good Gene

selection_scheme Exponential Ranking
c 0.998

E =
∑
i

αiGi α1 = 0.3;G1 : µ = 0.1;σ2 = 0.02

α2 = 0.3;G2 : µ = 0.9;σ2 = 0.02
env_sampling 300

µpoint
µs_ins µm ∈ {10−6, 2× 10−6, 5× 10−6, 10−5, 2× 10−5, 5× 10−5, 10−4}
µs_del

neighbourhood_rate µn ∈ {10−2, 5× 10−2, 10−1, 5× 10−1}

prear(score)
1

1 + exp−score− α
λ

with α = 50, λ = 4

working_zone_half_size 50
max_shift 20

max_indel_size 6
Wmax 0.01

Table IV.1 � Parameters used in all the experiments of this chapter. The mutation rate
takes its values among those proposed, one common value for the three types of local
mutations.

Globally, the evolutionary process is not modi�ed: the organisms progressively acquire
new genes by duplication and modify them in such a way that the whole gene repertoire
ful�ls the task the organisms are selected for. All the simulations proceed qualitatively
in a similar way, evolving quickly in the �rst stage of evolution (rapid gene acquisition
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mostly by duplication-divergence) then slowing down the process of gene acquisition while
optimizing the sequence of existing genes and promoters.
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Figure IV.10 � Average spontaneous rearrangement rate observed during each simulation
as a function of the (�xed) neighbourhood rate.

Compared to the experiments we have already presented, the rate at which rearrangements
occur is no longer constant nor �xed by the experimentalist. It depends on both the
neighbourhood rate µn and the presence of repeated sequences on the chromosome. It
is hence free to evolve and could well be selected for or against. Yet, despite this added
degree of freedom, the measured rearrangement rate remains a very strong determinant
of genome size and content (�gure IV.11). These results con�rm those obtained with
previous versions of the model in which the rearrangement rates were direct parameters
of the model (Knibbe et al., 2007a). Even with homologous rearrangements, we �nd
again that the spontaneous rate of rearrangement has a negative impact on �tness (�gure
IV.11(c)) because it still sets an upper bound on genome size and hence on the number
of genes (�gure IV.11(b)). However, rearrangements are also mandatory for evolution to
be e�cient. Indeed, an organism whose genome lost its capacity to rearrange would be
unable to e.g. duplicate its genes. Combined to the fact that genes are very unlikely to
appear de novo, this means that such an organism would be unable to enlarge its gene
repertoire and would hardly be evolvable at all.
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Figure IV.11 � Genome Size (a), Gene Number (b) and Metabolic Error (c) of the best
organism after 20,000 generations for each simulation, as a function of the spontaneous
rearrangement rate.

5.2 Trade-o� between homologous and nonhomologous rearrange-
ments

Homologies are created by rearrangements (duplications), either homologous or nonhomol-
ogous. Subsequently, these repeated sequences will promote homologous rearrangements.
There is hence a sort of positive feedback loop to rearrangements and this process seems
to be self-maintained. However, as duplications are performed in tandem (the duplicated
sequences being side-by-side), a single deletion between two repeats can cancel several
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duplication events in a single step, going back from an ampli�ed tandem array to a single
copy of the sequence (Higgins, 2005). Moreover, local mutations gradually destroy the re-
peats created by duplication, making the overall process even more complex. There must
hence be some sort of complex interactions between the mutation rate, the neighbourhood
rate and the (evolving) rates of both homologous and nonhomologous rearrangements.
A rearrangement can occur between any pair of sequences, whether they are similar (ho-
mologous rearrangement) or not (nonhomologous rearrangement). However, similar se-
quences have a greater probability of leading to a rearrangement than sequences of low
similarity. In our model, given the probability of �nding alignments of di�erent scores on a
random sequence, we consider homologous those rearrangements whose breakpoints align
with a score at least equal to 30. Rearrangements whose breakpoints have lower alignment
scores are considered nonhomologous. The distribution of the scores of the alignments that
led to rearrangements for each mutation rate and neighbourhood rate (�gure IV.12) can
help us understand this intricate relationship. If we consider this data vertically, we can
clearly observe that the proportion of homologous rearrangements is higher when the
neighbourhood rate is high. However, as we progress downwards, the distributions behave
di�erently: while they remain nearly unchanged on the left hand side, nonhomologous
rearrangements become much more frequent on the right. A noteworthy observation is
that there is a great variation in the number of rearrangement events. In fact, it is not the
number of nonhomologous rearrangements that increases (it actually remains stable), but
rather the number of homologous rearrangements that collapses when the neighbourhood
rate decreases.
The underlying phenomenon is best understood when looking at the data in a top-left to
bottom-right fashion. One can then identify a phase transition between a regime of mainly
homologous rearrangements at high µn and low µm, and a regime of mostly nonhomol-
ogous rearrangements at low µn and high µm. In fact, for the possibility of homologous
rearrangements to be maintained along the evolutionary process, homologies must be
created (by either homologous or nonhomologous duplications) at least as fast as they
are destroyed by local mutations. At high neighbourhood rates, this condition is always
achieved because rearrangements are numerous. However, at low neighbourhood rates,
rearrangements are not so frequent and a complex interaction between chromosomal re-
arrangements and local mutations can appear. When mutations are very frequent, the
modi�cations they cause in the sequence can overcome the creation of homologies and
stall the whole process.
Since they correspond to the set of parameters in which these subtle interactions can
occur, the four histograms at the bottom of Figure IV.12 are the most interesting. Within
this line, throughout which µn = 10−2, the change in rearrangement mode from mainly
nonhomologous to mainly homologous is particularly clear when the spontaneous rate of
small mutations decreases.
To better understand the dynamics of homologous versus nonhomologous rearrangements,
we further analysed the simulations from the left hand side, that display both the greatest
proportion of homologous rearrangements (within the bottom line) and, interestingly, the
best �nal �tness of all parameter sets. For the three runs of this parameter set (µn = 10−2

and µm = 5 × 10−6), we kept track of the family ties during the evolution. We then
retrieved the line of ancestry of the �nal best individual and analyzed the mutational
events that occurred on this successful lineage. Except for those that occurred during the
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Figure IV.12 � Distribution of the scores of the alignments that caused a rearrangement
to occur in the whole population and during the entire evolutionary process, for each
value of µn and µm. Light grey: homologous rearrangements, dark grey: nonhomologous
rearrangements. For computational performance reasons, the given values are minimal
boundaries to the corresponding alignment score (cf. Algorithm 1).

very last generations, the events on this lineage are those that went to �xation, either
by selection or by genetic drift. In addition, every other 10 generations, we used the
standard bioinformatics tool Mummer (Kurtz et al., 2004) to �nd the most signi�cant
repeated sequences in the ancestral genomes. Mummer uses an approach similar to that
of BLAST: it �rst searches for exact short repeats and then tries to join them together,
allowing for gaps and mismatches. An example of Mummer output is shown in Figure
IV.13. In this example, there are both direct and inverted repeats, and most of the repeated
sequences are located in non-coding parts of the genome. This suggests that non-coding
DNA plays a major role in genome evolvability by providing breakpoints for chromosomal
rearrangements. The emergence of repeated sequences having little or no direct impact on
�tness has already been observed in genetic programming (Langdon and Banzhaf, 2008)
although in that particular case, these repeated sequences could be thought to participate
in robustness rather than evolvability.

Figure IV.14 shows the results of the analysis of the whole lineage of ancestors. It shows
that �tness improvements are strongly correlated with the presence of repeats in the
genome and, consequently, with the occurrence of chromosomal rearrangements. The im-
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Figure IV.13 � Example of Mummer �dot plot� for the best individual at t = 2000 gener-
ations, for µn = 10−2 and µm = 5× 10−6, seed 2. Both the x- and the y-axis represent the
genome of this individual. Long and strongly similar sequences appear as runs of diagonal
lines across the matrix (exact match length = 15 bp, min. cluster length = 200 bp, max.
gap between adjacent matches = 6 bp). Grey areas: coding sequences.

pact of chromosomal rearrangements on evolvability is thus rather complex: on the one
hand, a very high rate of spontaneous rearrangements has a negative impact on the �-
nal �tness (Figure IV.11(c)), but on the other hand, in these simulations where the rate
was low and the �nal �tness high, we �nd that the presence of rearrangements is corre-
lated with �tness improvement (Figure IV.14). This suggests that a minimal amount of
chromosomal rearrangements is required for evolution to be e�cient.

A closer look at the rearrangements that went to �xation in these simulations (see Fig-
ure IV.15) reveals that (i) most of the �xed rearrangements were based on homologous
breakpoints (score > 30), (ii) most of the �xed translocations and inversions were neutral,
(iii) most of the �xed deletions were bene�cial and (iv) most of the �xed duplications
were deleterious. This last result is surprising at �rst sight: one would expect �xed events
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Figure IV.14 � Analysis of the line of ancestry of the �nal best individual for µn =
10−2 and µm = 5 × 10−6. First row: evolution of �tness (the smaller the distance to the
target, the higher the probability of reproduction). Second row: evolution of the number
of mutational events, by windows of 500 generations. Third row: number of alignments
found by Mummer on the genome (parameters: see Figure IV.13). Each column represents
one of the three repetitions with the same set of parameters.

to be mostly neutral or bene�cial. Our hypothesis is that despite their immediate neg-
ative impact, duplications can be indirectly selected because they allow for the creation
of new gene copies (which can then undergo small mutations and ultimately realize new
functions) and new repeats (which can then mediate other rearrangements). They can
hence allow for subsequent �tness improvement, thus enabling their �xation. This e�ect
is similar to the one observed by Adami (2006) where some deleterious mutations were
observed in the line of descent of the eventual �winners�. These deleterious mutations
were relatively quickly followed by bene�cial mutations and were often necessary for the
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Figure IV.15 � Analysis of the �xed rearrangements for µn = 10−2 and µm = 5 × 10−6

(all seeds together). Each point represents a rearrangement that occurred on the line
of ancestry of the �nal best individual. The lower the point, the more bene�cial the
rearrangement. Interestingly, most bene�cial rearrangements were homologous rearrange-
ments (score > 30).

subsequent bene�cial mutations to have an e�ect on �tness. A similar situation has been
observed in in vitro experimental evolution where less �t but more evolvable organisms
consistently prevailed in the long term (Woods et al., 2011).

6 Conclusion

In this chapter, we have proposed and validated a tractable model of homology-driven
chromosomal rearrangements based upon an intermittent alignment search strategy. The
results of our �rst set of experiments using this model con�rm our previous results regard-
ing the in�uence of rearrangements on genome compactness. In large genomes, repeated
sequences (located mostly in non-coding regions) promote rearrangements that are, most
of the time, deleterious. There is thus an indirect selective pressure to limit the number of
rearrangements, which is done by eliminating repeats (fewer homologous rearrangements)
and by reducing genome size (fewer nonhomologous rearrangements). However, we have
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also shown that the absence of rearrangements is correlated with �tness stasis, suggesting
that rearrangements can sometimes be directly bene�cial or provide appropriate genetic
background for subsequent bene�cial mutations. A minimal amount of rearrangements
is thus required for evolvability. Here, most of the rearrangements that went to �xation
are homologous ones. For homologous rearrangements to be possible, repeats must be
created at least as fast as they are destroyed by small mutations. In the end, the best
conditions for evolvability seem to be a small basal rate of nonhomologous rearrangement
combined with a low-enough mutation rate, thus leading to a few stable repeats and to
an intermediate degree of variability by homologous rearrangements.
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Chapter V

Horizontal Transfer

1 Introduction

Horizontal transfer (HT) is the transfer of genetic material between individuals that are
not direct parents of one another. The terminology of horizontal transfer comes from the
classical view of a tree of life where o�spring are placed directly above or under their
parents, individuals of the same generation thus sharing the same height on the tree.
In this view, the transfer of genetic material between individuals of the same generation
would appear as horizontal.
In bacteria, horizontal transfer can occur through di�erent mechanisms, the most wide-
spread being conjugation, transduction and transformation (Higgins, 2005; Lewin, 2007;
Willey et al., 2007). Conjugation is an active process during which a bacteria injects a part
of its genome into another bacteria by cell contact, usually through a �sex pilus�. The most
widely known example of conjugation is the F-factor transfer where a plasmid (secondary
chromosome) called the F-factor is transferred from an F+ bacteria (that owns a copy of
the F-factor) to a former F− bacteria (that doesn't own a copy of the F-factor), turning
it into an F+ bacteria (Willey et al., 2007). Transformation is the process by which a
bacteria integrates some exogenous genetic material into its cell (e.g. DNA released in
the environment by dead bacteria). Finally, transduction is a virus-mediated mechanism
of horizontal transfer: a bacteriophage infecting a bacteria can make mistakes and pack
some bacterial DNA into its capsid. Then, when the virus infects another bacteria, this
DNA can be integrated to the genome of the newly infected bacteria, thus producing a
horizontal transfer.
Horizontal transfer plays a major role in bacterial evolution, providing a way for bacteria
to take advantage of bene�cial mutations found by other bacteria, possibly from other
species. Within a given species, horizontal transfers allow bacteria to evade the clonal
interference phenomenon (Hill and Robertson, 1966) 1: when two di�erent bene�cial mu-
tations are found concomitantly in two di�erent lineages, horizontal transfer allows both

1. The clonal interference phenomenon is also known as the Hill-Robertson e�ect.
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mutations to be assembled into a single organism, thus speeding up evolution.
Another interesting possibility provided by horizontal transfer has been proposed, al-
though indirectly, that regards evolvability through mutator alleles. It was shown that
mutator alleles can accelerate adaptation to new environments by providing an alter-
native path towards adaptation through a transient mutator state: an antimutator can
transiently turn into a mutator and turn back to an antimutator after having found a few
bene�cial mutations very quickly (Taddei et al., 1997; Tenaillon et al., 1999). Although
in their model, a single mutational event with a �xed probability could revert a mutator
to an antimutator, it might be thought that it would not be that simple for a mutator
to re-discover e.g. an error-repair mechanism whose loss had led to its mutator state.
However, horizontal transfer could well account for the reversion of these mutators to
antimutators by reintegrating the lost allele from another antimutator lineage (provided
that the mutator allele has not gone to �xation yet).
In such a model where evolvability is controlled by a speci�c locus, linkage disequilib-
rium is a necessary condition for second-order pressure to act upon this locus (hitch-
hiking). Then, if transfer is made available, the linkage disequilibrium can be broken,
thus forbidding second-order selection. In Aevol however, the control of evolvability is
distributed throughout the genome, so the second-order pressure on evolvability could
persist even when transfer is allowed. We thus expect to observe the same kind of e�ects
of the rearrangement rates on the size and structure of the genome as we have in previous
experiments with no horizontal transfer.
To test this hypothesis, a biologically plausible � i.e. homology-driven � model of horizon-
tal transfer was required. Transfers, like rearrangements, are potentially very dangerous,
allowing for the replacement of any genetic sequence of one organism (the recipient) with
any sequence (potentially of very di�erent size and structure) from another organism (the
donor). Now, biasing the process towards homologous rearrangements (as is the case in
real organisms) should favour allelic recombination which can be thought as a lot less
hazardous 1 while providing a way to evade linkage disequilibrium as well as clonal inter-
ference.

2 Mechanisms of Horizontal Transfer in bacteria

From the point of view of the sequence, conjugation, transformation and transduction all
have their own speci�cities, both regarding the conditions necessary to their occurrence
(whether it involves recombination and what kind of recombination) and their e�ects
(sequence insertion or replacement).
Conjugation usually concerns plasmids, i.e. independent circular secondary chromosomes,
so that no DNA recombination is required for such a transfer to take place, the plas-
mid being merely transferred from the donor to the recipient with no further interaction
with other genetic material. Still, some plasmids can be integrated into the chromosome
through a simple recombination event, involving a single pair of aligned sequences. It

1. As stated with humour by Nordin et al. (1999), �the natural exchange is strongly biased toward
experimenting with features exchanging very similar chunks of the genome � speci�c genes performing
speci�c functions � that have small variations among them, e.g. red eyes would be exchanged against
green eyes, but not against a poor immune system�.
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may sometimes happen that part of the main chromosome gets transferred through con-
jugation, in which case the transferred segment is not circular. In such a situation, the
transferred segment is single-stranded but is complemented upon arrival into the recipient
cell (Willey et al., 2007). Then, recombination is needed for the segment to be integrated
to the recipient's chromosome. In this speci�c case, since the segment is linear and is now
double-stranded, two pairs of aligned sequences are needed for the transfer to succeed
(reciprocal recombination).
In the case of transformation, the transferred sequence is single-stranded, and contrary
to what happens during conjugation, it remains single-stranded in the recipient cell. Its
integration into the recipient chromosome will then be achieved through non-reciprocal
recombination, the single-stranded segment invading the chromosome and replacing one of
the existing strands, thus forming heteroduplex DNA (Willey et al., 2007). This particular
recombination requires the sequences to be similar along the whole length of the integrated
segment.
Transduction is mediated by bacteriophage, a viral capsid conveying bacterial DNA due to
a mishap during the virus life cycle. There are two types of transduction, generalized and
specialized, both leading to similar outcomes. The phage containing DNA from the donor
cell will inject it into the recipient cell as a double-stranded DNA fragment, possibly
circular, that may subsequently be integrated into the recipient chromosome through
reciprocal recombination (Willey et al., 2007).
To sum up, transduction leads to a transfer by replacement involving two breakpoints,
one at each end of the transferred segment. Transformation also leads to a transfer by
replacement but the transferred and replaced sequences must align along their whole
length and not only at its extremities. Finally, conjugation can lead to either a transfer
by insertion when a whole plasmid is transferred or by replacement when the transferred
segment is not circular. Note that the latter case has both similar prerequisites and e�ects
as transduction. Conjugation by insertion requires only one alignment for the former
plasmid to be integrated into the main chromosome, and none at all if it remains a
plasmid in the recipient cell.

3 Modelling Horizontal Transfer in Aevol

As we have seen in the previous section, three di�erent mechanisms of horizontal transfer
can lead to transfers either by replacement or by insertion and require either one or two
local alignments or the alignment of the whole transferred sequence with the sequence
to be replaced. Eventually, our goal is to study the dynamics of each kind of transfer.
However, our �rst goal is to conduct a general study on the dynamics of transfer in
general.
To introduce horizontal transfer in Aevol in a simple way, we modelled only one type of
transfer. Since both transduction and conjugation can lead to a transfer by replacement
requiring two local alignments (one at each end of the transferred segment) we assume
this type of transfer to be most general and chose to model and study this particular kind
of transfer �rst.
The transfer stage takes place at the beginning of replication. A new parameter µt will
determine the proportion of replications during which a transfer will be attempted. For
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those replications not falling in that proportion, the process is the same as in the former
model. When a replication is �selected� for a transfer attempt, the recipient is selected
using the exact same process as the parent selection process in the �classic� Aevol model
(following the selection scheme � see chapter I section 6). A candidate donor (di�erent
from the recipient) is then selected at random in the population.
Then, as for the homology-driven rearrangement process presented in the previous chapter,
a series of local searches will be performed between randomly chosen points from each of
the genomes (donor and recipient), following a uniform distribution along the length of the
corresponding genome. In other words, a random position is drawn in the genome of both
the donor and the recipient and an alignment is searched for between the neighbouring
sequences. The maximum number of candidate pairs of points to be tested is determined
as the product of the neighbourhood_rate (parameter of the model � see chapter IV,
section 4) and the size of the recipient's genome nb_pairs = µn × Lrecipient. The local
search space is de�ned in the same way as for the homology-driven rearrangement process
(see chapter IV, section 4).
A transfer will occur if two distinct alignments A1 and A2 are found between the chro-
mosomes of the donor and of a recipient. If so, the entire segment de�ned between the
breakpoints of A1 and A2 on the chromosome of the donor will replace the whole seg-
ment de�ned between the breakpoints of A1 and A2 in a copy of the chromosome of the
recipient (i.e. in the chromosome of the o�spring). If only one alignment was found (or
none at all), the replication will go on without transfer.

4 Impact of Horizontal Transfer on Indirect Selection

Here, our goal is to explore the e�ects of horizontal transfer on evolution and in particular
to test whether it alters the impact of chromosomal rearrangements on the structure of
the genome that we have discussed throughout this manuscript. We let 140 populations of
1,000 individuals evolve during 50,000 generations in near identical conditions. The only
changing parameters throughout the experiment were the rate µmr at which each type of
both local mutations and chromosomal rearrangements occurred and the rate µt at which
horizontal transfer events were attempted. We tested all the combinations of 7 di�erent
values for µmr (10−6, 2 × 10−6, 5 × 10−6, 10−5, 2 × 10−5, 5 × 10−5 and 10−4 per bp per
replication) and 4 di�erent values for µt (0, i.e. no transfer at all, 10−3, 10−2 and 10−1 per
replication). Each combination was repeated �ve times with independent pseudorandom
number generator seeds, yielding among other things a di�erent initial population and
di�erent mutational events. The complete set of parameters used in these experiments is
presented in table V.1. Note that in these experiments, the chromosomal rearrangements
are realized regardless of the degree of similarity of the sequences (breakpoints randomly
chosen as in the older version of Aevol). This is due to the excessive computational cost
that would have resulted from the search for alignment both within the genome of each
organism and between genomes in the same simulation. As was the case for the rearrange-
ment rate in the experiments presented in the previous chapter, the rate at which transfer
actually occurs is not �xed. It depends on both the parameter µt which determines the
�transfer attempt� rate, and the presence of homologies between the genomes. However,
as shown in �gure V.1, the observed number of transfer events is strongly determined
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by the rate at which they are attempted. Table V.2 shows, for each value of µmr in the
simulations with µt = 10−1, the average proportion of replications in which a transfer
actually occurred. We clearly see the e�ects of local mutations that make homologous
sequences diverge in di�erent lineages, thus reducing the actual rate of transfer. This is
similar to what was observed for homologous rearrangements in the previous chapter.

Parameter Value
N 1,000

nb_gener 50,000
init_length 5,000
init_method Clonal, One Good Gene

selection_scheme Exponential Ranking
c 0.998

α1 = 1.2;G1 : µ = 0.52;σ2 = 0.12
E =

∑
i

αiGi α2 = −1.4;G2 : µ = 0.2;σ2 = 0.07

α3 = 0.3;G3 : µ = 0.8;σ2 = 0.03
env_sampling 300

µpoint
µs_ins
µs_del
µdupl µmr ∈ {10−6, 2× 10−6, 5× 10−6, 10−5, 2× 10−5, 5× 10−5, 10−4}
µdel
µinv
µtrans

transfer_attempt_rate µt ∈ {10−3, 10−2, 10−1}

prear(score)
1

1 + exp−score− α
λ

with α = 50, λ = 4

working_zone_half_size 50
max_shift 20

max_indel_size 6
Wmax 0.01

Table V.1 � Parameters used in all the experiments of this chapter. The common rate
for each kind of mutation and rearrangement takes its value among those proposed. The
rate at which a transfer is attempted take its value among those proposed, a rate of 10−1

means that during one replication out of ten, a putative donor will be chosen at random
in the population, the genomes of both the recipient and the donor will be searched for
alignments, a transfer actually occurring if two alignments of su�cient score are found
between the genomes.
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Figure V.1 � Number of transfer events observed during the whole evolution as a function
of the transfer attempt rate µt.

10−4 0.05729798
5× 10−5 0.06445151
2× 10−5 0.07364774

10−5 0.08011026
5× 10−6 0.08534714
2× 10−6 0.09385118

10−6 0.09670939

Table V.2 � Average proportion of replications involving a transfer event observed for each
value of µmr in the simulations with µt = 10−1.

Figures V.2, V.3 and V.4 show respectively the evolution of the metabolic error, the num-
ber of genes and the number of non-coding bases of the best individual in the population
throughout evolution for the di�erent values of µt. Figure V.5 shows the last two indicators
averaged over the last 1,000 generations. These �gures suggest that horizontal transfer
makes very little di�erence (if any) regarding the e�ects of the second-order pressure de-
scribed in Chapter I, Section 9.2. This is very surprising since horizontal transfers, like
chromosomal rearrangements, are large scale genetic variation events that could therefore
well be thought to have dramatic e�ects on evolution.
The classical analysis of experiments conducted using Aevol involves the reconstruction
of the lineage of the �winning� organism, thus providing us with important information
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(b) µt = 10−3
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(d) µt = 10−1

Figure V.2 � Evolution of the metabolic error of the best organism of each generation. The
grey scale corresponds to di�erent values of µmr, black lines correspond to µmr = 10−4,
the lightest grey to µmr = 10−6.

regarding the mutational events that went to �xation (see e.g. chapter IV, section 5).
However, when horizontal transfer is allowed, the concept of the line of descent of an
organism becomes at least unclear. Indeed, a horizontal transfer event can replace a seg-
ment of DNA of any size with another segment, itself of any size so that the genome of a
given organism can be composed of half of the genomes of both of its ancestors. Then a
�lineage� would be at best very �bushy� and very di�cult to interpret. We hence need to
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Figure V.3 � Evolution of the number of genes of the best organism of each generation. The
grey scale corresponds to di�erent values of µmr, black lines correspond to µmr = 10−4,
the lightest grey to µmr = 10−6.

resort to indirect indicators to understand the dynamics that led to this apparent lack of
e�ects of horizontal transfers.

To test whether homology makes a di�erence, we conducted further experiments in which
no alignment was needed for a horizontal transfer event to occur and compared the di�er-
ent outcomes. Since the e�ects of horizontal transfer seem quite mild, we focused on the
set of parameters where the number of HT events was greatest, i.e. on the simulations
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(b) µt = 10−3
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(c) µt = 10−2
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(d) µt = 10−1

Figure V.4 � Evolution of the amount of non-coding sequences of the best organism of each
generation. The grey scale corresponds to di�erent values of µmr, black lines correspond
to µmr = 10−4, the lightest grey to µmr = 10−6.

where µt = 10−1. We simulated the evolution of 35 populations with a very similar set
of parameters to that used for the main experiment: for each value of µmr tested, we
injected into the new experiments the spontaneous rate of transfer that had been ob-
served on average for the same value of µmr (see table V.2). This is because when no
alignment whatsoever is needed for an HT to occur, every attempt leads to a transfer. In
this particular case, µt is the spontaneous rate of transfer.
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Figure V.5 � (a): average number of genes and (b): amount of non-coding sequences of
the best organisms of the last 1,000 generations of each simulation.

Figures V.6, V.7 and V.8 show the number of genes and the number of non-coding bases of
the best individual in the population throughout evolution and averaged over the last 1,000
generations for both the experiments where the HT process is sensitive to alignments and
where it is random. It is again very surprising to observe that the sensitivity to sequence
similarity in the choice for HT breakpoints seems to have very little impact (if any) on
the structure of the evolved genomes.

However, a closer look to the horizontal transfer events show that there are indeed di�er-
ences. Figure V.9 shows the proportion of replications involving an HT that was bene�cial,
deleterious or neutral. If there are no patent di�erences in the number of bene�cial or dele-
terious events, it clearly appears that there are many more neutral events when homology
matters. This could be the result of a greater probability for an exchange of homologous
sequences: when sequence similarity (even circumscribed to the breakpoints) is needed for
an exogenous sequence to replace part of the genome, it is more likely that the exogenote
replaces its homologue than when the process is completely random. However, if this were
the explanation for the observed di�erence in the number of neutral events, we would
expect bene�cial events to be more numerous in the case where HT occurs preferentially
where sequences look alike, and this does not seem to be the case.

Bene�cial mutations are rare. However, �gure V.9 suggests that around one replication
involving an HT out of ten is bene�cial. This is due to the fact that, when HT is allowed,
organisms with relatively low �tness can easily become better by replacing part of their
genome by a homologous sequence taken from a �tter individual. If this is interesting per
se on the level of the population, probably reducing its heterogeneity, it actually intro-
duces a very strong bias when it comes to understanding the dynamics of novel mutations
and their putative interferences. To reduce this bias, we focused on the replication of the
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Figure V.6 � Evolution of the number of genes of the best organism of each generation. (a):
simulation with homology driven transfer (b): simulation with random point transfer. The
grey scale corresponds to di�erent values of µmr, black lines correspond to µmr = 10−4,
the lightest grey to µmr = 10−6

top 100 individuals in the population. As shown in �gure V.10, focusing on the replications
where the recipient was already good before the transfer occurred reveals interesting dif-
ferences in the proportion of neutral and bene�cial events, both being more frequent when
similarity is taken into account. This is particularly true at high mutation/rearrangement
rates where homology-driven transfer proves to be both neutral and bene�cial much more
often than random transfer (over 10 times as much).

To better understand this e�ect, a closer look at the transfer events themselves is necessary.
The size of the transferred and replaced sequences in particular are of great interest. Figure
V.11 shows the average size of the transferred segments for bene�cial, deleterious and
neutral replications in both aligned and random transfer simulations. Note that since the
genome is circular and the transferred segment between two breakpoints bp1 and bp2 can
be either that going from bp1 to bp2 or from bp2 to bp1, the average size of the segments
that are spontaneously transferred is roughly half the size of the donor's genome. It is
worth noting that there are no clear di�erences between the experiments with or without
alignments and that in both cases, transfers leading to neutral replications seem to involve
smaller sequences. This is not very surprising. Indeed, large sequences are more likely to
contain more genes and hence to cause more changes in the genome of the recipient than
small sequences. Yet, the size of transferred segment is probably not the main determinant
of the dangerousness of a transfer. Indeed, the transferred sequence can replace a segment
of any size, potentially very di�erent from its own size. So, even the transfer of a very
small sequence could well have dramatic e�ects if it replaced a long sequence containing
many genes. Following this idea, it is interesting to look at the relative sizes of the segment
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Figure V.7 � Evolution of the amount of non-coding sequences of the best organism of each
generation. (a): simulation with homology driven transfer (b): simulation with random
point transfer. The grey scale corresponds to di�erent values of µmr, black lines correspond
to µmr = 10−4, the lightest grey to µmr = 10−6

that was transferred and the segment it replaced.

Looking at the relative sizes of the segment that was transferred and the replaced seg-
ments, the sensitivity to sequence similarity seems to favour those transfers whose seg-
ments are about the same size (�gure V.12), again suggesting replacements between ho-
mologous sequences. This is even clearer when considering only very small di�erences in
size: in �gure V.13, we can observe that when alignments favour transfers, many transfers
consist in replacing a given sequence by another sequence of exactly the same size. This re-
�ects the replacement of a sequence by its homologue, possibly identical (neutral transfer)
or having undergone base substitutions. We also observe that there are more transfers in-
volving sequences that di�er by only one to six bases in length than there are with greater
di�erences. In this case, the transferred and the replaced sequences are homologous, one
of them having undergone an indel (whose sizes are precisely comprised between one and
six, see table V.1). Figure V.14 shows these di�erences in size between the transferred
and the replaced segments in terms of proportion of the recipient's genome. This indicator
will henceforth be referred to as δsize. In this �gure, each point corresponds to the average
δsize for bene�cial, neutral or deleterious replications within a simulation. We can observe
a great di�erence between both sets of simulations. Globally, δsize seems to be smaller
when alignments are accounted for. Bene�cial events are of particular interest: at low
mutation rates, the corresponding δsize di�ers only slightly between the experiments with
and without alignments. Above 2× 10−5 however, the exchanged segments seem to be of
roughly the same size with alignments while di�ering quite noticeably when alignments
do not matter. This is all the more important since, as we have seen in �gure V.10, there
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Figure V.8 � (a): average number of genes and (b): amount of non-coding sequences of
the best organisms of the last 1,000 generations of each simulation.

are many more bene�cial replications involving transfer at high mutation rates. The fact
that neutral events correspond almost exclusively to sequences of the same size in the
�aligned� case provides further con�rmation that sensitivity to sequence similarity in the
process of horizontal transfer favours allelic recombination.
This trend is con�rmed by the analysis of the scores of the alignments that lead to a
transfer in the simulations where homologies are accounted for. Figure V.15 shows that
while both homologous and nonhomologous transfer can have deleterious e�ects, nonho-
mologous recombination is very unlikely to be neutral or to lead to a �tness improvement.

5 Discussion and Perspectives

In this chapter, we have presented a large scale experiment of digital evolution in which
175 populations of 1,000 individuals evolved independently for 50,000 generations. These
175 simulations fall into 5 di�erent groups, each having a di�erent scheme of horizontal
transfer: groups A, B and C present di�erent rates of transfer attempts, namely one
attempt every 10, 100 or 1,000 replications respectively for groups A, B and C, a transfer
actually occurring if two similar pairs of sequences are found between the genomes of
the candidate donor and recipient. In group D, transfers were deterministically triggered
between random points at the same rate as that e�ectively observed in group A. Finally,
in group E, transfer was completely disabled. In each group, seven di�erent values of
mutation/rearrangement rate (µmr) were tested (the same rate for each type of mutations
and rearrangements), namely 10−6, 2× 10−6, 5× 10−6, 10−5, 2× 10−5, 5× 10−5 and 10−4

per base pair per replication.
The evolved organisms within each of these groups present very di�erent structures, re-
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Figure V.9 � Proportion of replications involving transfer that are bene�cial (crosses),
deleterious (circles) and neutral (triangles). (a): simulation with homology driven transfer
(b): simulation with random point transfer.

producing very precisely the results we had previously obtained using the Aevol model
without any kind of transfer: low values of µmr consistently lead to very large genomes
containing many genes and a huge proportion of non-coding sequences while at high rates
of mutations and rearrangements, the evolved genomes are very small, containing very
few genes that are very tightly packed on the genome. It was shown that these di�er-
ences in genome structure are due to a long term indirect selective pressure towards a
speci�c trade-o� between robustness and evolvability. The robustness and evolvability of
an organism are usually thought to be the consequence of the speci�c set of genes or
alleles it possesses, in particular the presence or absence of e.g. mutator alleles, some
advanced error-repair mechanisms or chaperones. However, as we have previously stated,
transfer provides a way to break linkage disequilibrium. Thus, a mutator that quickly
found several bene�cial mutations could recombine with an antimutator and become an
antimutator itself. Thus, the mutator allele could not bene�t from hitchhiking in the long
term. Following this idea, allowing for transfer should prevent the second-order pressure
on evolvability from being involved in the long term and the e�ects of this pressure on
the structure of the genome that are observed when transfer is not allowed should not be
observed when it is allowed. This, however, fails to happen here: evolution consistently
shapes the genomes in the long term in such a way that they present a level of muta-
tional variability close to the apparent optimum, even when horizontal transfer seems to
enable the exchange of alleles between di�erent lineages. This con�rms that the level of
mutational variability of a lineage is at least partly governed by the very structure of the
genome. Indeed such an intrinsic, global and entangled factor of robustness or evolvability
cannot be switched on or o� by transfer, so that transfer does not yield any independence
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Figure V.10 � Proportion of replications involving transfer among the best 100 organisms
of each generation. Proportion of bene�cial (crosses), deleterious (circles) and neutral
(triangles) replications. (a): simulation with homology driven transfer (b): simulation
with random point transfer.

between these causes of evolvability or robustness and the level of variability itself.
The fact that no clear di�erences were identi�ed regarding the �tness or the genome struc-
ture of the evolved organisms in these speci�c experiments does not mean that horizontal
transfer has no advantages. As a matter of fact, the ubiquity of sex (in some form) in
living systems strongly suggests that it is bene�cial in some way. One of the possible
explanations to the lack of di�erences in our experiments is the strong selective pressure
that was applied to our organisms. The selection scheme that we used here (exponential
ranking with c = 0.998) leads to short coalescence times (of the order of a few tens of
generations) that might be too short for e.g. clonal interference to be a real problem.
We hence look forward to testing horizontal transfer in di�erent conditions, particularly
under conditions of mild to moderate selection.
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Figure V.11 � Proportion of the genome transferred during replications of the best 100
organisms of each generation for bene�cial (crosses), deleterious (circles) and neutral
(triangles) replications. (a): simulation with homology driven transfer (b): simulation
with random point transfer.
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Figure V.12 � Distribution of the di�erence of size between the transferred and the re-
placed sequence during replications of the best 100 organisms of each generation for (a):
simulation with homology driven transfer and (b): random point transfer.
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Figure V.13 � Detailed distribution for small di�erence of size between the transferred and
the replaced sequence during replications of the best 100 organisms of each generation for
(a): simulation with homology driven transfer and (b): random point transfer.
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Figure V.14 � Di�erence of size (expressed in terms of proportion of the donor genome)
between the transferred and the replaced sequence during replications of the best 100
organisms of each generation for bene�cial (crosses), deleterious (circles) and neutral
(triangles) replications. (a): simulation with homology driven transfer (b): simulation
with random point transfer.
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Figure V.15 � Distribution of the score and average score of the alignments that lead to a
transfer during replications of the best 100 organisms of each generation. (a): deleterious,
(b): neutral and (c): bene�cial replication. (d): average score for deleterious (circles),
neutral (triangles) and bene�cial (crosses) replications.
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Conclusion

The Aevol model was designed by Carole Knibbe and Guillaume Beslon to study the
evolution of genome structure. Using this model, they discovered a very strong indirect
selective pressure toward a speci�c level of mutational variability of the phenotype. It was
shown that, since non-coding sequences provide a substrate for chromosomal rearrange-
ment breakpoints, these non-coding sequences are mutagenic for the genes they surround.
Thus, when chromosomal rearrangements are involved, the per base-pair per replication
rate at which they occur is a strong determinant of the structure of the genome: organisms
having evolved in the context of low rearrangement rates usually own huge genomes with
many genes and a lot of non-coding DNA while organisms having evolved with very high
rates of rearrangement tend to have very short genomes with fewer genes and almost no
non-coding DNA. Despite this great diversity of genome structure, all the evolved organ-
isms have common characteristics: their genome is shaped by evolution in such a way that
the best individual in the population tends to give birth to one o�spring having exactly
the same phenotype as its parent (i.e. one neutral o�spring), suggesting the selection of
a speci�c tradeo� between mutational robustness and evolvability in the long term.
These seminal results raised very interesting questions regarding both the speci�c condi-
tions under which such a second-order pressure can be involved and the putative e�ects of
this pressure on other levels of organization than the genome. To tackle these questions,
the model was improved and extended to be both more e�cient computationally and more
realistic biologically. We also used the R-Aevol model, an extension of Aevol developed
by Yolanda Sanchez-Dehesa during her PhD in which an explicit model of regulation of
gene expression was introduced.
Given the central role of chromosomal rearrangements in the identi�ed indirect pressure,
a �ner model of these rearrangements was needed to better understand the dynamics of
this pressure. We hence improved the model to account for the speci�cities of chromoso-
mal rearrangement mechanisms and in particular their sensitivity to sequence similarity.
Finally, this model of homologous rearrangements was used to model horizontal transfer
in a way that is biologically relevant.
We conducted experiments with both this extended model and with R-Aevol. In the ex-
periment presented in chapter II, we tested di�erent combinations of local mutation rates
and of chromosomal rearrangement rates in the conditions of the former Aevol model (i.e.
with no regulation nor transfer and where homologies were not accounted for) and studied
the organisation of the transcriptome. The results show that while the local mutation rate
has an impact mainly limited to the coding sequences, the rearrangement rate e�ectively
applies a pressure on the entire genome, including non-coding sequences. Our results show
that the second order pressure for evolvability that was identi�ed by Knibbe et al. (2007a)
has very interesting e�ects on the level of the transcriptome: these results showed that or-
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ganisms having evolved under high rearrangement rates not only have very short genomes
but also have very tightly packed genes which tend to be transcribed together on only
a few polycistronic RNAs (operons), monocistronic RNAs and non-coding RNAs being
seldom found on these genomes. On the contrary, organisms having evolved under low
rearrangement rates and hence owning huge genomes usually have each of their genes
transcribed on a di�erent RNA (monocistronic). On these genomes, operons are rare and
those few that can be found usually contain only a couple of genes. Non-coding RNAs
however, are very numerous on these long genomes even though they have absolutely no
function.
The experiments we conducted using the R-Aevol model showed that, despite the addi-
tional degree of freedom that is provided by regulation, the e�ects of the indirect selective
pressure on the genome are very similar. Moreover, these e�ects come along with a clear
trend for organisms having evolved in the context of low mutations and rearrangement
rates to own very complex regulation networks, even when their environment is stable
and hence regulation is not needed.
The experiments using the improved model, in which a rearrangement has a greater
probability of occurring between similar sequences than between very di�erent sequences,
con�rmed the results previously obtained regarding the e�ects of the spontaneous rate
of rearrangements on the size and structure of the genome. The results also allowed us
to identify a complex interaction between homologous rearrangements, nonhomologous
rearrangements and local mutations and showed us that most bene�cial rearrangements
that had gone to �xation were homologous ones.
Finally, the last set of experiments we presented, in which homology-driven horizontal
transfer was allowed, showed that even when transfer provides a way of evading the
problem of linkage disequilibrium through allelic recombination, the e�ects of the studied
pressure continue to strongly determine the structure of the genome. This con�rms that,
at least in the model, the structure of the genome itself has a great in�uence on the level
of mutational variability of a lineage.
All these results (except for those regarding transfer) have been published independently.
However, a global pattern persists throughout these experiments and it is always the same
process that is involved: the second-order selection of a speci�c level of mutational variabil-
ity of the phenotype. These results con�rm those previously obtained by C. Knibbe and
G. Beslon in a wide range of conditions, showing how robust these results are. Moreover,
they show that the e�ects of this pressure span several levels of organization, including
gene regulation networks. Overall, even though it is always �tness that drives evolution, it
does so within the very strong constraints applied by the second-order selective pressure
we have discussed.
This work shows that there is still much to be understood regarding the mechanisms that
can lead to second-order selection and their e�ects. The di�erent results we obtained in
these relatively independent studies based on the Aevol model open great perspectives. In
particular, it would be of great interest to conduct experiment crossovers to test for exam-
ple the impact of homology-driven rearrangements or transfer in R-Aevol. These results
point directly to two main directions for future work: the regulation of gene expression
and horizontal transfer. Both directions will require the exploration of a wider range of
parameters. The improvements of the model in terms of computational cost will allow us
to conduct broader experiments using the R-Aevol model. This will enable us to test the
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impact of the complexity of the environment on the evolved structures or the in�uence of
regulation on the emergence of operons. Regarding transfer, it would be very interesting
to explore under which conditions it is bene�cial. We could then let organisms evolve the
ability to transfer genetic material itself and explore in more detail the conditions under
which �sex� might be selected for. Finally, transfer can itself give birth to other second-
order pressures and is often mentioned as an explanation for the emergence of structures
of interest (sel�sh operon, modularity). It would then be of great interest to study the
e�ects of these pressures on the structure of the genome and the transcriptome.
Finally, as long as evolutionary biology is our main concern, an exciting perspective of
this work is to compare the results obtained in the model with real organisms. It would be
very interesting, for instance, to compare the genomes and transcriptomes that evolved
in the model with the ever increasing amount of data available in public databases (in
particular those regarding prokaryotes). Finally, in silico experimental evolution methods
being very similar to those of in vivo or in vitro experimental evolution, comparing the
dynamics observed either in the model or in real organisms would be fascinating and
would enable us to progress in the validation of the Aevol and R-Aevol models, which has
never been done in arti�cial evolution.
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Appendix A

Aevol : un modèle individu-centré pour

l'étude de la structuration des génomes

Le texte de cette annexe a partiellement été publié dans (Parsons et al., 2010a).

1 Introduction

S'il occupe une position centrale dans la biologie moderne, le processus d'évolution des
espèces reste di�cile à étudier. En e�et, les mécanismes qui en sont responsables agis-
sent sur des échelles de temps très longues, rendant di�cile l'expérimentation directe sur
l'objet d'étude 1. À cet obstacle logistique, viennent s'ajouter des di�cultés d'analyse des
résultats : comment associer de façon claire un caractère observé à une cause évolutive
précise lorsque l'on ne maîtrise pas l'ensemble des paramètres pouvant entrer en jeu?
Les approches de génomique comparative permettent de s'a�ranchir de ces contraintes
de temps, cependant, elles sont basées sur un cliché instantané des séquences (l'ADN des
espèces actuelles) et doivent inférer leur passé évolutif.
La génétique digitale est un nouveau champ de recherche qui a émergé dans les années 90.
Des structures de données représentant des systèmes biologiques abstraits (les � organ-
ismes digitaux �) dans une � chimie arti�cielle � (Dittrich et al., 2001) sont interprétées
par des programmes dédiés qui leur permettent de se dupliquer, de subir des mutations,
d'évoluer et de s'adapter à leur environnement. D'un point de vue algorithmique, la géné-
tique digitale est très proche des algorithmes évolutionnaires, cependant, le but n'est
plus de trouver une solution à un problème d'optimisation spéci�que mais d'étudier le
processus évolutif lui-même dans une perspective de vie arti�cielle.
Les approches de génétique digitale permettent de réaliser facilement et en un temps
raisonnable des expériences d'évolution contrôlées et reproductibles, donnant accès à un

1. Même pour des espèces à reproduction rapide comme les bactéries, une expérience directe d'évolu-
tion prend des dizaines d'années (Blount et al., 2008).
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enregistrement fossile complet de l'intégralité du processus évolutif. Il est alors possible de
soulever des questions essentielles quant aux fondements génétiques de l'évolution de la
complexité, de l'organisation des génomes ou de la robustesse et de l'évolvabilité (Adami,
2006).
Nous présentons ici le modèle d'évolution expérimentale in silico Aevol ainsi qu'un aperçu
des résultats obtenus grâce à ce modèle.

2 Le modèle Aevol

Aevol est un modèle d'évolution arti�cielle développé au LIRIS pour permettre l'étude de
la structuration des génomes dans le processus évolutif. Largement inspiré de la génétique
bactérienne, sa principale particularité vis-à-vis des algorithmes génétiques classiques est
qu'il met en ÷uvre explicitement des processus de transcription et de traduction du
génome, faisant ainsi apparaitre un niveau intermédiaire (le protéome) entre le géno-
type et le phénotype. Cette couche intermédiaire autorise une grande �exibilité au niveau
du génome, permettant à la structure du génome elle-même d'évoluer. Nous pouvons alors
interroger le modèle sur les causes possibles des di�érences observées chez les organismes
réels en termes de structuration et d'organisation du génome.

2.1 Aevol - Principes généraux

Aevol est un modèle individu-centré qui permet de simuler l'évolution d'une population
de N individus. Chaque individu possède un génome dont la structure est inspirée des
génomes bactériens. Il s'agit d'une séquence binaire circulaire double-brin contenant un
nombre variable de gènes séparés par des séquences non-codantes (�gure A.1). Au début
d'une simulation, tous les individus possèdent le même génome aléatoire, puis, à chaque
génération, le génome de chaque individu est décodé pour déterminer son phénotype qui
permettra à son tour de calculer la valeur d'adaptation (ou �tness) de l'individu.

Double stranded genome 
with scattered genes

Shine-Dalgarno

START

STOP

Coding DNA Sequence

Promoter

Terminator

Figure A.1 � Dans Aevol, chaque organisme possède un génome binaire circulaire double-
brin le long duquel des séquences codantes sont identi�ées grâce à des séquences de signal
prédé�nies. Les promoteurs et les terminateurs délimitent des séquences transcrites au
sein desquelles des séquences codantes peuvent à leur tour être présentes entre un signal
Start et un codon Stop en phase (voir �gure A.2 pour le code génétique).

Plus un individu est adapté à son environnement, plus il a de chances de se reproduire. À
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chaque génération, la population est intégralement renouvelée. Une roulette biaisée selon
la �tness des individus permet de déterminer le � parent � de chaque nouvel individu.
Pendant le processus de réplication, le génome peut subir di�érents types de mutations :
des mutations ponctuelles (substitutions, petites insertions ou délétions) mais aussi des
réarrangements à l'échelle du chromosome (duplications, délétions, translocations, inver-
sions). La structure du génome est donc libre d'évoluer (nombre de gènes, taille du génome,
...) et on peut étudier l'émergence de di�érentes structures génétiques.

2.2 Du génotype au phénotype

Dans Aevol, le décodage du génotype est directement inspiré des processus de transcription
et de traduction bactériens. Nous avons dé�ni un ensemble de signaux qui, lorsqu'ils sont
présents sur l'ADN, nous permettent d'identi�er les séquences qui seront transcrites en
ARNs et, sur celles-ci, les sous-séquences qui seront traduites en protéines. Ces protéines
seront ensuite interprétées en termes de � fonctions biologiques � réalisées ou inhibées par
la protéine.

Transcription du génome

Chez les bactéries, l'initiation de la transcription s'e�ectue en des sites particuliers, appelés
promoteurs, où les ARN-polymérases reconnaissent une séquence consensus et commen-
cent la synthèse de l'ARN. Dans Aevol, un promoteur est une séquence dont la distance
de Hamming d avec une séquence consensus prédé�nie, est inférieure ou égale à dmax.
La séquence que nous utilisons typiquement dans nos expériences comporte 22 bases :
0101011001110010010110 et on autorise jusqu'à dmax = 4 di�érences. Cette séquence est
su�samment longue pour que des séquences non-codantes n'aient qu'une faible probabilité
de devenir codantes à la suite d'une mutation.
Le niveau d'expression e d'un ARN dépend de sa séquence promotrice. Plus le promoteur
est proche de la séquence consensus, plus le niveau d'expression est élevé : e = 1− d

dmax+1
.

Cette modulation de l'expression des gènes modélise de façon simple l'interaction entre
l'ARN-polymérase et le promoteur, sans introduire de réseau de régulation 1.
Lorsqu'un promoteur est identi�é, la séquence est transcrite jusqu'à ce qu'un termina-
teur soit rencontré. Les terminateurs doivent être plus fréquents que les promoteurs pour
limiter le chevauchement des séquences transcrites. Nous avons donc dé�ni les termina-
teurs comme des séquences capables de former des structures en tige-boucle, similaires
aux terminateurs ρ-indépendants bactériens 2. Dans nos expériences, les tailles typique-
ment utilisées sont de 4 pour la tige et de 3 pour la boucle, ainsi les terminateurs ont la
structure abcd ∗ ∗ ∗ dcba, où a, b, c, d = 0 ou 1.

Traduction des ARNs

Les séquences transcrites (ARNs) ne conduisent pas systématiquement à la production
d'une protéine. Comme pour la transcription, le processus de traduction débute et se

1. Une extension du modèle (RAevol) intègre un mécanisme explicite de régulation de l'expression des
gènes Beslon et al. (2010a,b).

2. Remarquablement, cette structure dite de � hairpin � permet de coder des terminateurs à la fois
longs et fréquents.
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termine lorsque le signal correspondant est rencontré. Ici, un signal de début de traduc-
tion est composé d'une séquence dite de Shine-Dalgarno, suivie, quelques bases plus loin,
d'un codon Start (voir le code génétique �gure A.2). Lorsque ce signal est rencontré, la
séquence est lue codon par codon jusqu'à ce qu'un codon Stop soit trouvé dans le même
cadre de lecture que le codon Start. Le processus de traduction associe alors à chaque
codon (ou triplet de bases), un � acide aminé � abstrait grâce à un code génétique et la
séquence d'acides aminés forme la séquence primaire de la protéine (�gure A.2).

Genetic code

000 START
001 STOP
100 M0
101 M1
010 W0
011 W1
110 H0
111 H1

…001…0101…0110…0010…0110110011000101111011101110011010001…

…100…1010…1001…1101…1001001100111010000100010001100101110…

M1-H1-W1-M1-H0-W1-W0

Promoter 5’ UTR

Shine-Dalgarno

START STOPCoding sequence

11

110

10

Bin code M :

Bin code W :

Bin code H :

0,66

0,07

0,33

Norm.

Expression

level = e

M
W

e.|h|

Possibility

degree

Function

Figure A.2 � Schéma du processus de transcription-traduction-repliement dans Aevol. Les
séquences transcrites sont celles qui commencent par un promoteur (séquence consensus)
et �nissent par un terminateur (structure tige-boucle), qui n'est pas sur la �gure. Les
séquences codantes (gènes) sont recherchées dans les séquences transcrites ; elles com-
mencent par une séquence Shine-Dalgarno-START et se terminent par un codon STOP.
Un code génétique arti�ciel (à gauche) est utilisé pour obtenir la séquence primaire de
la protéine codée par un gène et un processus de � repliement � nous permet de calculer
l'activité métabolique de la protéine (capacités fonctionnelles).

Comme chez les organismes réels, notre séquence génétique peut être lue suivant six cadres
de lecture di�érents (trois sur chaque brin), ce qui permet aux organismes de présenter des
gènes chevauchant (correspondant à des protéines di�érentes puisque lus sur des cadres
de lecture di�érents).

Repliement des protéines et calcul du phénotype

Pour modéliser l'activité des protéines et le phénotype correspondant, nous avons dé�ni
une � chimie arti�cielle � simple (Dittrich et al., 2001) qui décrit le métabolisme d'un
organisme dans un langage mathématique. Nous considérons qu'il existe un espace ab-
strait Ω de l'ensemble des processus métaboliques possibles. Dans le modèle, Ω = [0, 1], un
processus métabolique est alors un simple réel. Dans cet � espace métabolique �, chaque
protéine est impliquée dans un ensemble de processus, soit en contribuant à leur réalisa-
tion, soit en les inhibant. Cette contribution est décrite grâce à un formalisme de logique
�oue : une protéine peut activer ou inhiber un processus biologique avec un degré de
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possibilité compris entre 0 et 1 (positif pour une activation, négatif pour une inhibition).
Une protéine est donc caractérisée par une fonction qui associe un degré de possibilité à
chaque processus biologique. Pour des raisons de simplicité, nous utilisons des fonctions
linéaires par parties ayant la forme de triangles isocèles (voir �gure A.2). Ainsi, trois
nombres su�sent pour caractériser l'activité métabolique d'une protéine : la position m
(m ∈ Ω) du triangle sur l'axe fonctionnel, sa demi-largeur w et sa hauteur h (positive
quand la fonction est réalisée par la protéine, négative quand elle est inhibée). La protéine
contribue donc à la plage de processus métaboliques [m−w,m+w], avec une préférence
pour les processus les plus proches de m (pour lequel la plus grande e�cacité h est at-
teinte). Ainsi, plusieurs types de protéines peuvent co-exister, allant de protéines très
spécialisées et e�caces (faible w, fort h) à des protéines beaucoup plus polyvalentes et
moins e�caces (fort w, faible h).
Le calcul de ces trois paramètres à partir de la séquence primaire de la protéine est l'étape
qui correspondrait dans les vraies cellules au repliement de le protéine. Ici la séquence
primaire de chaque protéine est décomposée en trois sous-séquences binaires entrelacées
codant les valeurs des trois paramètres m, w et h. Par exemple le codon 010 (resp. 011)
est traduit en l'Acide Aminé W0 (resp. W1), ce qui signi�e qu'il contribue au paramètre
W en ajoutant un bit 0 (resp. 1) à son code binaire. La séquence binaire correspondant
à chaque paramètre est �nalement interprétée comme un réel normalisé selon la longueur
de la séquence et les valeurs possibles du paramètre.
Une fois toutes les protéines d'un organisme identi�ées et caractérisées, leurs activités
respectives sont combinées en utilisant les opérateurs de Lucasiewicz. L'ensemble �ou qui
en résulte représente le phénotype P de l'individu, il indique le degré avec lequel cet
individu réalise chaque fonction biologique de Ω.

2.3 Environnement, adaptation et sélection

Dans Aevol, l'environnement est représenté par une cible phénotypique : l'ensemble �ou E
dé�ni sur Ω qui représente le degré de possibilité optimal pour chaque fonction biologique.
Pour évaluer un individu, on compare son phénotype P à la cible E. L'aire géométrique
g entre ces deux ensembles représente l'� erreur métabolique � de l'individu (�gure A.3).
Plus l'erreur métabolique est petite, meilleur est l'individu. Cette mesure pénalise aussi
bien la sur- que la sous-réalisation de chaque fonction.
Chaque individu se voit attribuer une probabilité de reproduction en fonction de son erreur
métabolique g et un tirage multinomial détermine le nombre de descendants e�ectif de
chacun d'entre eux. Di�érentes méthodes de sélection sont disponibles, basés sur le rang
de l'individu dans la population ou directement sur sa valeur d'adaptation (Blickle and
Thiele, 1996). Toutes les expériences mentionnées ici ont été réalisées avec des sélections
sur le rang, sans croisement entre les individus.

2.4 Opérateurs génétiques

Pendant leur réplication, les génomes peuvent subir sept types de mutations génétiques,
parmi lesquels trois sont locaux (substitution d'une base, insertion ou délétion de quelques
bases) et quatre sont des réarrangements chromosomiques a�ectant des segments poten-
tiellement longs du génomes (duplication, délétion, translocation et inversion). Les points
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Figure A.3 � Mesure de l'adaptation d'un individu. Courbe pointillée : cible environ-
nementale E. Courbe trait plein : phénotype P (pro�l métabolique obtenu en combinant
toutes les protéines). Zone grisée : erreur métabolique g.

de rupture de ces réarrangements sont tirés aléatoirement sur le chromosome selon une
loi uniforme.
Les mutations a�ectent le génome mais n'ont pas nécessairement un e�et phénotypique.
Ainsi, une mutation ayant lieu dans une région non transcrite sera complètement neutre
(sauf si elle crée un nouveau gène, ce qui est très rare). Les taux de mutations µi sont des
paramètres du modèle, ils sont dé�nis comme la probabilité par base et par réplication
qu'un évènement de type i ait lieu.

Aevol est donc un modèle de génétique digitale dans lequel la structure des génomes
est libre d'évoluer. Il intègre les principaux mécanismes impliqués dans l'expression et
la modi�cation du génome, introduisant un niveau intermédiaire entre le génotype et le
phénotype et autorisant non seulement des opérateurs de mutations ponctuelles, mais
aussi les réarrangements chromosomiques.
Ces particularités font d'Aevol un modèle particulièrement adapté à l'étude de l'organi-
sation des génomes. Il permet de réaliser des campagnes expérimentales complètes dans
di�érentes conditions expérimentales (e.g. di�érents taux de mutations) et d'observer com-
ment les paramètres structuraux des génomes évoluent en fonction de ces conditions. Il est
alors possible de véri�er la cohérence des résultats obtenus avec les di�érentes hypothèses
proposées dans la littérature et d'essayer de comprendre les mécanismes à l'origine des
phénomènes observés.

3 Une évolution typique dans Aevol

Aevol permet de mener des campagnes d'évolution expérimentale sur plusieurs dizaines
de milliers de générations et d'analyser l'allure des génomes obtenus en fonction des
paramètres. Si les structures �nales peuvent être très di�érentes, le processus évolutif
est quant à lui relativement stable d'une expérience à l'autre.
On observe ainsi une amélioration rapide de la �tness des individus dans les premières
générations puis un ralentissement progressif. On notera que la �tness n'est jamais totale-
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ment stable et que des mutations avantageuses se produisent régulièrement, même après
500 000 générations.
L'évolution des individus s'accompagne de profondes modi�cations dans la structure de
leur génome (�gure A.4). Dans un premier temps, la taille du génome augmente fortement
pour passer des 5 000 paires de bases initiales (initialisation par défaut dans aevol) à
plusieurs dizaines de milliers de paires de bases en quelques centaines de générations. Le
nombre de gènes et la taille des séquences non codantes augmentent aussi fortement. La
deuxième phase se caractérise par une décroissance rapide de la taille du génome et du
nombre de gènes, tandis que la taille des gènes, elle, continue de croître. En�n, au cours de
la troisième phase, la taille des génomes est stable. Par contre, l'organisme recommence
à acquérir des gènes (mais plus modérément) tandis que la taille des séquences codantes
augmente continûment.
Ainsi, dans un premier temps, les organismes augmentent rapidement la taille de leur
répertoire génique, le plus souvent par duplication-divergence de gènes pré-existants. Ils
sélectionnent ensuite les gènes les plus adaptés avant d'a�ner leur répertoire génique en
améliorant progressivement chacune de leurs séquences codantes.

(a) (b) (c)

Figure A.4 � Évolution des paramètres structuraux des génomes pour une exécution
� typique � de aevol. (a) Évolution de la taille du génome. (b) Évolution du nombre de
séquences codantes (nombre de gènes). (c) Évolution de la taille moyenne des séquences
codantes. D'après (Knibbe, 2006).

4 Résultats

Les di�érentes expériences que nous avons menées avec le modèle Aevol nous ont permis
d'apporter des éléments de réponse à plusieurs questions ouvertes en biologie évolutive.
En faisant varier les paramètres du modèle, nous avons observé de grandes variations
dans l'organisation des génomes des individus. Nous avons ainsi constaté que, dans un
environnement identique, une population évoluant avec un taux de mutations fort donnait
naissance à des génomes beaucoup plus courts et compacts qu'une population sujette à des
taux de mutations plus faibles (Knibbe et al., 2007a). Ce phénomène était déjà connu en ce
qui concerne la quantité de séquences codantes sous la dénomination d'� error threshold �
(Eigen, 1971; Ochoa, 2006) ou de fardeau mutationnel (Lynch, 2006), mais son extension
à la quantité de non-codant constitue un résultat majeur du modèle.
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Figure A.5 � (a) Nombre de gènes par ARN codant (contenant au moins un gène) du
meilleur individu de chaque population après 50 000 générations. (b) Proportion de de-
scendants non neutres du meilleur individu de chaque population après 50 000 générations.
(c) Génome du meilleur individu de la génération 50 000 d'une simulation typique avec
des taux de mutations et de réarrangements élevés (1.10−4). À gauche : ARNs (codants
en noir, non-codants en gris). À droite : gènes. En bas : zoom sur l'opéron (1) avec ses 5
gènes.

Le modèle Aevol nous a également permis d'étudier l'in�uence des taux de réarrangements
sur l'organisation de la transcription. Une analyse de la structure des ARNs d'organismes
ayant évolué dans Aevol montre que les variations de taille des génomes s'accompagnent
de profondes di�érences dans la façon dont ils sont transcrits. Les génomes les plus longs
présentent de très nombreux ARNs non-codants, leurs ARNs codants étant courts et ne
codant généralement que pour une seule protéine. Les génomes courts, quant à eux, sont
généralement transcrits en des ARNs beaucoup plus longs codant chacun pour plusieurs
protéines, formant ainsi des opérons (�gure A.5). L'origine évolutive des opérons dans les
génomes réels est une question ouverte en biologie (Lawrence, 1999).
Nous avons constaté qu'il existait un seuil de taux de réarrangements au-delà duquel
les opérons deviennent la règle plutôt que l'exception. Cet e�et de seuil est en fait le
résultat de la combinaison de deux pressions antagonistes. Selon le phénomène d'error
threshold, seuls les génomes courts peuvent être transmis �dèlement lorsque le niveau de
variations génétiques est élevé. Par ailleurs, la sélection des individus les plus adaptés à
l'environnement tend ici à favoriser ceux ayant beaucoup de gènes. La conjonction de ces
deux pressions résulte ainsi en une pression vers la compaction des génomes et, in �ne,
en la formation d'opérons (Parsons et al., 2010b).

En conduisant des expériences similaires avec le modèle R-Aevol, une extension de Aevol
dans laquelle un processus de régulation explicite du niveau d'expression des gènes a été
introduit, nous avons pu obtenir des résultats très intéressants quant à la complexité des
réseaux de régulation. Après avoir laissé évoluer des population d'organismes arti�ciels
dans un environnement stable ne nécessitant aucune régulation, nous avons constaté de
grandes di�érences dans la complexité des réseaux de régulation obtenus. Ainsi, les or-
ganismes ayant évolué avec de forts taux de mutations et de réarrangements, en plus
d'avoir des génomes courts et ne comportant que peu de gènes, présentent des réseaux
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de régulation très peu connectés. À l'inverse, les organismes n'ayant été exposés qu'à de
faibles taux de mutations et de réarrangements présentent de longs génomes comportant
beaucoup de gènes ainsi que des réseaux de régulations densément connectés (�gure A.6).
Il apparaît en fait que la complexité du réseau de régulation découle directement de la
pression de second ordre vers un niveau spéci�que de variabilité mutationnelle du phéno-
type qui est exercée sur les génomes. En e�et, quand le nombre de gènes augmente, le
nombre de promoteurs augmente également, résultant en une croissance super-linéaire du
nombre d'associations possibles entre gènes et promoteurs. Nous avons ainsi pu montrer
que, au moins dans le modèle, le taux de réarrangements est un déterminant majeur de
l'évolution de la complexité des réseaux de régulation (Beslon et al., 2010b).

(a) (b)

Figure A.6 � (dans Beslon et al., 2010b). Réseaux de régulation du meilleur organ-
isme à la dernière génération de simulations représentatives avec des taux de muta-
tions/réarrangements respectivement bas (gauche), modérés (centre) et hauts (droite).

Étant donné le rôle majeur des réarrangements chromosomiques dans la structuration
des génomes au travers de la pression de second-ordre que nous avons identi�ée, une
modélisation plus �ne des mécanismes de réarrangements était nécessaire pour mieux
tenir compte de leurs spéci�cités et en particulier de leur sensibilité aux similarités entre
séquences.
Ici, nous avons modi�é le modèle pour y introduire une sensibilité aux alignements entre
séquences dans les mécanismes de réarrangements chromosomiques. Nous avons développé
un algorithme de recherche d'alignements adapté au contexte de l'évolution expérimentale
in silico qui permet de rendre compte de la plus grande probabilité qu'un réarrangement
ait lieu entre des séquences similaires (réarrangements homologues) qu'entre des séquences
qui di�èrent grandement (réarrangements non homologues).
En utilisant cette extension du modèle, nous avons montré que, si les réarrangements
chromosomiques sont dangereux, ils sont également nécessaires pour que l'évolution soit
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e�cace. Ici, la plupart des réarrangements �xés sont des réarrangements homologues.
Cependant, ces réarrangements nécessitant la présence de séquences répétées pour avoir
lieu, celles-ci doivent être créées (par duplication) au moins aussi vite qu'elles ne sont
dégradées (principalement par des mutations locales). Nous avons ainsi pu identi�er une
interaction complexe entre les réarrangements homologues et non homologues, pouvant
créer des séquences répétées, et les mutations locales, pouvant les dégrader. Au �nal, il
semble que les conditions dans lesquelles l'évolvabilité est maximale corresponde à des
taux de réarrangements non homologues faibles combinés à des taux de mutation eux
aussi faibles, permettant ainsi de maintenir un nombre limité de séquences répétées qui
favorisent l'évolvabilité en constituant un bon substrat pour les réarrangements homo-
logues.

Les transferts horizontaux jouent un rôle majeur dans l'évolution des bactéries en permet-
tant de solutionner les problèmes d'interférence clonale mais aussi en fournissant un moyen
de casser les déséquilibres de liaison qui pourraient apparaitre. Les déséquilibres de liaisons
étant souvent cités comme condition nécessaire à l'action de pressions de second ordre,
nous avons introduit dans le modèle un mécanisme de transfert horizontal biologiquement
plausible permettant de casser ces déséquilibres en favorisant la recombinaison allélique.
Les résultats obtenus avec cette nouvelle extension du modèle reproduisent très précisé-
ment les résultats précédemment obtenus avec le modèle �classique�, ce qui con�rme que,
au moins dans le modèle, le contrôle du niveau de variabilité mutationnelle du phénotype
est distribué sur l'ensemble du génome, déterminé par la structure du génome elle-même.

L'utilisation de Aevol nous permet de montrer les relations qui existent entre tous ces
résultats. Ils traduisent en e�et la nécessité, pour un organisme en évolution, de maintenir
un équilibre entre robustesse et évolvabilité, entre capitalisation de l'acquis et exploration
de nouvelles solutions. Ainsi, lorsque l'on analyse les meilleurs individus d'une population
évoluée, on constate qu'ils partagent tous une caractéristique commune : leur nombre
moyen de descendants neutres FνW (produit de la probabilité de reproduction neutre 1

Fν et du nombre de descendants W � voir �gure A.5) est juste supérieur à 1.
Aevol a donc montré que les génomes ne sont pas façonnés uniquement par des pressions
directes sur la �tness ou par des biais mutationnels. Ils sont aussi profondément structurés
par des pressions indirectes (pressions de second ordre) dont celle pour atteindre un bon
compromis entre exploration et exploitation. La compacité du génome est un levier d'a-
justement de ce compromis car les génomes présentant plus de gènes et plus de non-codant
subissent plus de réarrangements pouvant impacter la �tness (Knibbe et al., 2007a).

5 Conclusion

En faisant évoluer, de façon réaliste, des organismes virtuels, Aevol nous permet d'étudier
les mécanismes évolutifs. Aevol permet de retrouver de nombreuses caractéristiques struc-

1. Cette probabilité peut être obtenue expérimentalement en e�ectuant 10 000 reproductions de l'in-
dividu et en comptant le nombre de descendants ayant la même �tness que le progéniteur.
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turelles des génomes d'organismes réels en faisant varier des paramètres tels que les taux
de réarrangements ou la taille de la population. Il nous permet donc de proposer aux bi-
ologistes des hypothèses alternatives pouvant expliquer ces phénomènes. Le modèle Aevol
peut donc être considéré comme un générateur d'hypothèses pour expliquer l'évolution de
l'organisation des génomes.
D'un point de vue biologique, le modèle a vraisemblablement encore beaucoup à nous
apprendre, nous projetons par exemple de mener des expériences parallèles sur le modèle
et sur des organismes réels pour étudier l'évolution de la pathogénicité chez certaines
bactéries.
D'un point de vue informatique, l'identi�cation de pressions de second ordre telles que
nous avons pu les observer dans nos simulations pourrait ouvrir de nouvelles voies dans le
domaine de l'optimisation par algorithmes génétiques. D'autre part, les données produites
par le modèles peuvent servir de banc d'essai pour des algorithmes de découverte de
connaissances (Beslon et al., 2010a).


